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Abstract

We introduce wavelets as a particular way of choosing bases in function spaces.
The concept of a multiresolution analysis provides a setting for constructing
certain wavelets and where practical algorithms have been developed. The con-
structions and the algorithms depend on a sequence of coefficients.
The term ‘wavelet’ is a relatively new term and most of the ideas are new, but
there is a very active interest in using wavelet techniques in applications. We will
mention some of these uses.



1 Introduction: A Review of Bases

In this section, we review briefly some concepts of basis and also recall the notion
of a Fourier series.

1.1 Vector spaces and algebraic bases

The most familiar context for bases is in linear algebra/ I1§ a vector space over
any fieldKK, then abasisfor V' is a subseBB C V such that every vectar € V/
can be expressed uniquely as a finitely nonzero sum

v=> wub (v, €KVbe B, {be B:uv,# 0} finite)

beB

Every vector space has a basis. We will refer to this type of basis algan
braic basiswhen we need to make a distinction with other types of bases to be
introduced below.

Choosing a basi®3 for an n-dimensional vector spaceé and an ordering
B = {by,bs,...,b,} for the basis is equivalent to choosing a linear isomorphism

K" — B

n
(1,9, ... ) +— Za]—b]—
=1

The fact that a given vector space will have many different bases (unless it is
{0}), can be viewed as an advantage because it often allows us to choose a basis
that adapts to the problem at hand. A simple example is the ability (in good cases)
to choose a basis of eigenvectors for a given linear transformation— V.

Though bases always exist in theory, there are many infinite-dimensional cases
of interest where one cannot write down any basis explicitly.

1.2 Finite-dimensional inner product spaces and orthonormal
bases

Notation 1.2.1 From now on the symbd is reserved for a field which can only
be either the real® or the complex field.

When given a finite-dimensional vector spdceover K equipped with an
inner product-, -): V' xV — K, itis very convenient to work with aorthonormal
basisB = {ey, es,...,e,} (satisfying(e;, e;) = 0 for j # k and(e;, e;) = 1 for
all j (1 <j,k<n)).
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Then every vector can be expressed in terms of the basis in a computable way
v = Z(v,ej>ej (veV).
j=1

(Our notation is that inner products are linear in the first variable, and conju-
gate linear in the second variable in the complex case.)

An (ordered) orthonormal basis for a finite-dimensional inner product space
(V,(-,-)) gives us an inner-product preserving linear isomorphism fkdhwith
the standard (euclidean) inner productto

For hermitian linear operato?s V' — V on afinite-dimensional inner product
space (I'v,w) = (v,Tw) for all v,w € V) we can always find an orthonormal
basis of eigenvectors.

1.3 Banach spaces and Schauder bases

Recall that aBBanach spaceonsists of a vector spac€é over K equipped with
anorm|| - ||x so thatX is completein that norm (every Cauchy sequenceXn
converges to a limit inX'). Convergence irX is taken with respect to the metric
(or distance) associated with the noditx,, x2) = ||x1 — x2|| x-

With a norm we can contemplate infinite linear combinations, when we define
infinite sums via limits, as in

(e.) n

g T, = lim E x;
n—oo

n=1 j=1

Definition 1.3.1 A Schauder basi®r a Banach space&X is a sequencée,,) ,
of vectors inX such that every: € X can be expressed uniquely as an ‘infinite
linear combination’

T = Z TpCn (with z,, € KVn)
n=1

Examples 1.3.2 (i) The classical sequence spacgand/? (1 < p < o) have
as bases the ‘standard basis; )% ,, where

en = (0nj) 21

(6,5 = 0if n # j while 6,,,, = 1 for all ).
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7 (1 < p < o0) is the space of all sequences;)2, (a; € KVj) such that

e’} 1/p
H(O‘j)})‘ial: (Z\Oéjlp) < 00.

Jj=1

co consists of all sequences; )52, such thatim; ., a; = 0 with the supre-
mum norm

H ;)72 H = sup |oj
( ])jfl oo 1<j<poo| il

(i) The function spaceg?[0, 1] and L?(R") are defined (somewhat) similarly
to /7 except that they are (almost everywhere equivalence classes of) mea-
surable functiong on the domain which havgf|* integrable with respect
to Lebesgue measure.

Bases are not such a convenient idea for general Banach spaces. Only sepa-
rable Banach spaces can have a basis and many separable Banach spaces fail to
have a basis.

In general the order of summation in the infinite linear combination is impor-
tant, and this inhibits one from considering a more general kind of basis where
uncountably many basis vectors could be allowed. To remove dependence on the
order, one can consider unconditional bases, but even fewer Banach spaces have
these than have Schauder bases.

As in the vector space case, things are considerably simpler if one assumes that
the there is an inner product. However, in the vector space case inner products can
always be chosen (not necessarily in a useful and natural way) but in the Banach
space case the existence of a compatible inner product is a severe restriction.

1.4 Hilbert spaces and orthonormal bases

Recall that eHilbert spaceis an inner product spadé’, (, -, -) z) which is com-
plete (a Banach space) is the associated norm giveppy = \/(z, ) 5.
Common examples at’[0, 1] and L?(R") with the inner product given by

)= [ 13

(integrals with respect to Lebesgue measure).

Every Hilbert spacéd has arorthonormal basisn a sense that involves con-
vergence. In the Hilbert space case an orthonormal basis may be defined as a
maximal orthonormal subsdt € H — a set consisting of unit norm pairwise
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orthogonal elements aff with the property that it is not a proper subset of any
other such set.
Given any orthonormal basis for H, we can write every: € H as

x = Z(x,b}Hb

beB

in the sense that there are at most a countable number of nonzero terms in the
summation and for any enumeration

{b€B<ZE,b>H7é0}:{b1,b27}

of the nonzero terms, we have
n
r = lim Z.b:) b,
n_>0021< ) j>H J
j:

(No limit is needed if there are only a finite number of nonzero terms.)
Moreover, we have a convenient representation of the norii anterms of

the basis coefficients
Izl = > [, b)al?
beB

From now on, we will typically considét-valued function spaces.

1.5 Fourier series

Example 1.5.1For H = L?[0,1] there is a very simple orthonormal basis that is
so frequently used that it is almost the standard basis. {tjs: n € Z} where

en(t) = exp(2mint)

From the general theory, we know that eveng L2[0, 1] can be expressed as

asum
f= Z<f7 6n>en

neL

with convergence of the sum ik?-norm. This is normally known as tHeurier
seriesof the functionf and we often write

fn) = (f.en) = /O f(t) exp(—2mint) dt.
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It is also common to write

n

Suf(t) =Y f(j) exp(2nijt)

j=—n

for certain (symmetrical) partial sums of the series and the general Hilbert space
theory tells us that for alf € L?(0, 1] we have

T || — S, fll2 = 0

but it is a much deeper result due to Carleson that we also have almost everywhere
convergence of,, f(t) to f(t).

For f € LP[0,1] and1l < p < oo one also knows that
Tim [|f = Sufll, =0

so that the exponentiatg also form a Schauder basis tb¥[0, 1].

They donotform a basis fo.! [0, 1] or for C|0, 1] = the continuous functions
f:10,1] — K (with the supremum norm). What we can say however is that for
f € L[0,1], there is enough information in the Fourier coefficieft&)),.cz to
completely determing, but it is difficult to determine whether a given sequence
(an)nez is the sequence of Fourier coefficients of some (unknown) fungtien
L0, 1].

Remark 1.5.2 Why do we use Fourier series?

One may justify the choice of the Fourier series example of an orthonormal
basis forL?[0, 1] on the basis that it has proved its value over time, but one may
also argue that the complex exponentialét) = exp(2mint) are ‘eigenvectors’
of the differentiation operatof;.

Perhaps there is a slight problem because the operator is not globally defined
: L2[0,1] — L?[0,1] and there are other eigenvectesgt) = exp(2wiAt) with
A eC.

However, one may argue that the right context is to deal with is that of periodic
functions (having 1 as period). For this, we extend all functigns L?[0, 1]
periodically toR by discarding the value at 1 and extending friom ) to R using

period 1 (f(z) = f(z — [z]) with [z] the greatest integet ). At least the terms
of the Fourier series are naturally periodic in this way andtthere the 1-periodic
eigenvectors of differentiation.

In the context of periodic functions, one can argue that we are actually dealing
with functions on the unit circle of the complex plafie= {exp(27it) : t €
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R} = {exp(2mit) : t € [0,1)} and in this case the complex exponentigJsnay
be viewed as the irreducible unitary representatiorig. of

There is a generalisation of the Fourier theory t¢G), for G a locally com-
pact abelian group. We define tfié space with respect to Haar measure(dn
(normalised to giveésy measure 1 in the caseé is compact) and then we have a
‘Fourier series’ representation of evefye L?(G) where the series is indexed by
the sety of irreducible unitary representations@fin place ofZ.

2 Fourier Transform

We will continue in this section to considérvalued function spaces. However, at

some places it will be convenient to assume that a gjvenl? to be represented

is actuallyR-valued. Most of the remarks where this assumption is invoked can

be adapted by linearity or other means to the case of general complex vAlued
We progress to consider Fourier series where the period is not 1 and from

there, by a limiting argument, we arrive at the Fourier transforniRowe then

deal with some of the limitations of the Fourier transform as a preparation for

motivating the notion of a wavelet later.

2.1 Fourier series on general intervals

We can transfer the theory of Fourier series on the unit intééval to any other
interval[a, b] (a < b € R) by a simple change of variables. We have an isometric
(and inner product preserving) map

1 L70,1] — L?[a,b]
= =)

and so a way to transfer Fourier seried.fda, b].
Specialising to the cade, b] = [T, T| we have that for each € L*[—T,T],

9(s) = 2_4(n) ((}% o (27;17))

ne”L

with
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2.2 The Fourier transform

Combining these last two together, we can say

-5 ([ () ) (55)

nel

forg € L*[-T,T).
If we takeg € L?(IR) with compact support then we have

9() =2 % (/_Z g(t) exp (—227;7115) dt) exp (27;;5)

for all T" large.
If we now define a functioF (g) by

F@)(©) = [ o) exp(—2rict) at

—00

g(s) = %F(g) (%) exp (QZZTM)

neL

By treating this summation as a Riemann sum for an integral and taking the
limit asT — oo we can justify

we have

o) = [ " F9)(€) exp(2ries) de 1)

for g € L?(R) compactly supported. In fact, the formul®) (olds for allg €
L3(R).

The mapF is called theFourier transformon R and it can be proved (Parse-
val's theorem) thaf: L*(R) — L*(R) is an isometric isomorphism. The formula
(2) is theFourier inversionformula, which exhibits the inverse transform as being
almost of the same form &5 (in fact it is the adjoint ofF).

In the Fourier series case, functions [0n7’), or periodic functions with pe-
riod T', are exhibited as superpositions of exponentials exp(27nt/T) (with
periods a multiple of"). For the infinite line, we no longer have this granularity of
the periods and we need almost all possible periggsor the Fourier inversion
formula. We can argue that the continuous range of periods used implies that the
summation in Fourier series becomes an integral in the caReBfit we can still
think of everyf € L*(R) as being given by a ‘superposition’ of exponentials.
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We can view these exponentials as being all the bounded eigenfunctions of
the derivative operator dR and this gives a clue to important applications of the
Fourier transform in differential equations.

We can also view the Fourier transform from the group-theoretical point of
view. Then the dual group @& (that is, the space of irreducible unitary represen-
tations) is agaifR — if we identify ¢ € R with the one dimensional representation
of R given by its matrix ag$ — exp(2mit).

For future reference note that— exp(2ri&t) is periodic with periodl/|¢].

We can say it repeat§| times whent increases by 1, and this justifies saying that
it hasfrequency|¢| (measured in cycles or repetitions per unitof

2.3 Shannon-Nyquist sampling

For applications to digital communication, it is important to consider sending a
signal over a channel which is limited in frequency range. One can communicate
over such a channel only signglé&) with the property that the Fourier transform
F f is supported inside the range of the channel. By a simple phase change of
the signal (multiplying by a suitable complex exponentigb(27i&yt)), we may
assume that the channel can carry frequencies in the farigg2, 1/2].

Now, if we takeg = F f, we can reconstrugt from its Fourier series

=i (e (5E)) <)

ne’l

o) /W/2 ) exp (—2771'715) s
= X
\/_ W2 W
/W/2 e —2mins d
= X S
NilG W2 P w

= \/_/ F(f)(s)exp (—2{;{?/@%9) ds
(using the factthaf (f)(s) = 0for |s| > W/2). This should bg1/vW) f(—n/W)
by the Fourier inversion formula. However the Fourier inversion formula is a

formula in L?(R) and so cannot be applied pointwise in general. It turns out
(see below) that band-limited functions are automatically continuous, and then

wheré

IStrictly speaking we should have some factprs)™ in g(n) and also on the exponentials
above, but we have canceled these signs.
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we can justify this pointwise application of the inversion formula. We can show
g(n) = (1/vVW)f(—n/W). Thus the Fourier series formula says

FHO=Y71 (‘%) (%exp (%Wf’f)) (e < W)

and using the Fourier inversion formula (plus the assumption fhist band-
limited) we can show the following result.

Theorem 2.3.11f f € L*(R) is band-limited so thaF (f) is supported in—1/2, W/2],
then f is completely determined by its valugg: /W) (n € Z) and in fact

)= 3 fln/w) )

n=—oo

This can be interpreted to mean that if a channel is band-limited to a frequency
band of total widthiW” (or limited by |(| < W/2), then we cannot transmit a
continuous function along the channel, but only one value every time interval
1/W.

2.4 Compact support

We can be tempted from looking at band-limited functions (compact support of
the Fourier transform) to consider compactly supported functions, but we cannot
have both compact support férandF( f) simultaneously. This is a consequence

of the following theorem.

Theorem 2.4.1 (Paley-Wiener)If f € L?(R) has compact support then its Fourier
transformZ(f)(¢) (£ € R) extends to be an analytic functign— F(f)(¢):C —
C (or an entire function).

In fact this entire function must be of exponential type, that is it must satisfy

IF(NQ < APl (CeC)

for some constantd, B > 0.
Moreover, the (restrictions t@® of) entire functions of exponential type are
exactly the Fourier transforms of compactly supported functions*{iR).

A similar result applies to the inverse Fourier transform, so that the band-
limited functions are those that are restriction®Rt@f entire functions of expo-
nential type.
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As an entire function cannot be zero on any interval of positive length, unless it
is identically zero, it follows that andF( f) cannot both be compactly supported.

A gquantitative form of this fact can be stated for functions which are somewhat
localised in time and have Fourier transforms that are somewhat localised as well.

For f € L*(R) normalised to have unit nornfi (|| = 1 or [, | f(¢)]*dt = 1)
we can treatf(t)|? as a probability density function dR. Then we can try to
compute the mean and variance? of this probability distribution.

p= [drwra, o= [ - wilroPd

We will certainly be able to do this for compactly supported L*(R), but
we will also succeed for more general (normalisgd) L*(R).

As || F(f)ll2 = || fll2 = 1, we can also contemplate the mgaand variance
(6)% of [F(f)I.

Theorem 2.4.2 (Heisenberg uncertainty principle)If we havef € L?(R) and
also f'(1), f"(t),tf(t), () € L*(R) and| {2 = 1, then
S 1
79 = 47
We omit the proof of this, though it requires only some simple properties of
the Fourier transform, the Cauchy-Schwarz inequality and integration by parts.
See [, Appendix F] for a proof.

2.5 Windowed Fourier transforms

A drawback of both Fourier series and Fourier transforms is that they destroy local
information. Both allow reconstruction of functions i¥ (and L? for certainp,
though the reconstruction is not possible by exactly the same elegant inversion
formula). But it is part of the nature of the Fourier transform that the whole
transform is needed to recover the function.

A simple example is provided by the characteristic functions of intefoads.
By a simple computation the Fourier transform is

1 —exp(—2miaf)
N 2mié

f(X[O,a))(&)

and we can see that a small shiftimffects the Fourier transform at eagh
In particular a relatively small localised change in the function requires a re-
calculation of the Fourier transform/series and the whole transform is likely to be
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altered by such a change. Similarly a small local change on the frequency side (a
small change of the Fourier transform) will normally affect the whole function.
One may analyse a signal or a sound wave such as a piece of music played over
a certain time by taking its Fourier transform. First we must consider the signal
(or sound wave) to extend over infinite time (perhaps by extending it with zero
backwards in time te-co and forwards in time terco). One may consider (and
this is typically done) the absolute value of the Fourier transform of the signal at
frequency+¢ to be a measure of the amount of the total amount of frequihcy
present in the signal. (Assuming that the signal is a real one, we should combine
F(f)(&) exp(2mi&t) + F(f)(—E) exp(—2mi&t) to getA(€) cos(2m&(t — to)) with
amplitudeA(¢) = 2|F(f)(¢)| andphasel.)
For example in the cas(t) = xo,)(t), we get

_sin(maf) a1

A(S)_QW—E’ t°_§_E'

The phase can be thought of loosely as representing a time shift in frequency
&, but it is not easy to interpret it directly as related to a beginning time as one
must consider the cancellation between all the terms to recover the signal. Thus
the Fourier transform of the sound wave from a piece of music must contain all
the notes as the original sound wave can be recovered from it. However, there is
no simple way to detect from the Fourier transform which notes were played at
which times.

In the L? setting (or everl.!) we cannot handle a sound wave that consists of
a single note played with constant intensity for all time, but if we considered a
suitable generalisation (distributions) where such signals could be handled, then
the Fourier transformed signal would be concentrated at that one frequency. In
this way we can justify the interpretation of the amplitude as the ‘amount’ of a
given frequency present in a signal.

In an effort to also get a hold of local information, the windowed Fourier
transform takes the Fourier transform of many localised versions of the original
signal. We take a particular fixed functignof compact support, such g$t) =
X[-1,1] OF @ smoother version. Then we translatey arbitrary amounts to get
t — ¢g(t — a) and take the Fourier transform étt)g(t — a). We get a transform
for each translation amount

WEF(f)(a,§) = F(f(t)g(t —a))(§) = /Rf(t)g(t — a) exp (—2mikt) dt

The definition oW F depends on the choice gfandg is known as thavin-
dow function One may find strange effects caused by discontinuities or lack of
smoothness of and so choosing a smooth compactly supported window function
is desirable as a rule.
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The resulting®F does give local information about the functign at the
expense of introducing a ‘position’ parameter For a fixeda we must be able
to find fromWF (a, -) all the information abouy in the support of — ¢(t — a)
(which is the support of translated by:).

However, the information is still not very easy to decode. We can say that
WF(f)(a,§) represents the amount of frequericpresent in the graph of in-
tersection the window around though there will be an effect from the shape of
the graph ofy also.

We can argue thatVF must be limited in its ability to localise because of
the Heisenberg uncertainty principle. Applying the window to g@fg(t — a)
certainly gives us a windowed signal with relatively small standard deviatjon
but we do not always get good control énthe standard deviation on the trans-
form side. At the best, we could generate window functions wheneuld be
proportional to the reciprocal of the width of the window.

One might argue that for a relatively high frequegayhere the corresponding
period 1/¢ is smaller than the window, we are in a reasonably good position to
detect whether there is a frequertcyomponent inside the window. For relatively
small frequency, and large period, we do not really have a big enough window
on the graph off to say that we are detecting any variation in the graph at that
frequency.

Of course, when we take the Fourier transform, we do see something at all fre-
guencies, including small frequencies, but we are really detecting features caused
by the zero-extension of the graph &ft)g(t — a) past the window.

At high frequencies, small periods, we have room for several oscillations in-
side the window and we are now back to a similar position to that we had with the
Fourier transforny (f)(£) where we are not able to say where within the window
the high frequency change jhhappens.

If we managed to optimisé as roughly proportional to the reciprocal of the
width of the window, we would be able to do quite a good job of pin-pointing the
position of reasonably low frequency componentg dbut for higher frequencies
we could not expect to pin down the location except within a multiple of the
period, a high multiple in the case of high frequencies.

3 Wavelets via Frames

We continue the ideas introduced in studying the windowed Fourier transform to
get one approach to wavelets, perhaps the most general approach. Later we will
take a more restrictive setting where there are better computational algorithms
available.
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3.1 Continuous wavelet transform

If we take the discussion above a step further, it suggests that if we want to know
where we can find a component of frequegay the graph off, we should not
expect to be able to answer unless we can consider a section (or window) of the
graph of length comparable to the peribd.

We then take a window such as

sin(27rt) —1/2 <t <1/2
Wt)z{ 0 t>1/20rt < —1/2

but we could take any. Normally we assume thatis compactly supported; €
L*(R) and [, ¢ (t) dt = 0. We should think of the graph af as a single ‘cycle’

of a more or less periodic wave, but we will often want additional properties such
as smoothness af which will make this only approximately correct.

Instead of translating the wavelet around as we did for windows, we also scale
the wavelet to give stretched versions of the original wavelstth the same basic
shape but at different scale or frequency.

We define

1 t—>b
abll) = —= >0,beR
vl = 70 () (@ )
and this will give us a single ‘wavelet’ with support stretched tof its previous
length, frequencyl /a times the original frequency in some sense. (The factor
1/4/a is not really essential, but it is there to presefenorms — |1, ]2 =
191l2.)

Instead of imposing a further frequency on this, we just consider its inner
product with a givery.

Definition 3.1.1 Thecontinuous wavelet transforof f € L?*(R) corresponding
to a choice of ‘waveleti) is

W(f)(@b) = (f, Yup) = / f(t)%@b (t - b) i (a>0.bER)

a

The key to the continuous wavelet transform is that we can choasethat
W (f)(a,b) contains enough information to reconstruct the functforThe sim-
plest example where this is possible is callediaar Wavelet

1 0<t<1/2
vt)y={ -1 1/2<t<1
0 t>1ort<0
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Theorem 3.1.2 (Inverse wavelet transform)if » € L'(R)NL*(R) is real-valued
and satisfies thadmissibility condition

/°° IF(W)(©F
§

0

Cy = d¢ < o0

then forf € L*(R)

da 1/2
171l = v ( / W (£)(a,b) —gdb)
(a,b)€(0,00) xR a

For f € LP(R) (1 < p < o0)
1 da
o= [ W)@ b)as(t) S b
Cy (a,b)€(0,00) xR a
(if the integral is interpreted in a distributional sense).

We will not try to prove this result.
Notice that the Haar wavelet has Fourier transform

(1 — exp(—mi))”
2mi€

F()(€) =

and it is admissible.

Itis easy to see that a compactly suppoit€d functiony with [, 1(t) dt =0
is ‘admissible’ because the Fourier transform of any such function will be analytic,
have a zero af = 0 and decay faster than any powerlgf¢| as|é| — oo.

3.2 Discretisation of the CWT

In the case of the Haar wavelet at least, it is easy to see that there is a great
redundancy of information i/ (f)(a,b). Among they,;, those witha = 1
contain an orthonormal set it¥ (R):

{1m :m € Z} = {Xpmm+1/2) = Xim+1/2m+1) 1 M € L}

This is clearly not an orthonormal basis because no function can be expressed in
terms of these unless it is constant on the intervals with endpoints at adjacent half
integers.

However, the orignal work of Haar showed that

{¢2",2"m n,m c Z}
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does form an orthonormal basis fbf(IR). Thus we can express evefye L*(R)
as
= Z (f Yan 2nm) Yan gnm = Z W(f)(2",2"m)an 2nm
n,me”Z n,mez
from the general theory of orthonormal bases in Hilbert spaces.

This has been known and used by various authors since Haar invented it, but
it has not had so many applications because the basis functions are not continuous
and not well suited to many applications.

What is new in the wavelet context is that we can use other admisgible
which have good behaviour in many ways. We can even find much more regular
(for example continuous or continuously differentiable3o that

{on 9nm 1 n,m € Z}

forms an orthonormal basis @@ (R).
For some purposes, we might be happy with less, a discrete set of points
(an, by,) Which are sufficient to recoveff from W (f)(a,, by).

3.3 Frames

There are a number of ways to generalise the concept of an orthonormal basis in
a separable Hilbert space.
One generalisation, known asRaesz basisallows for a sequence of vectors
x, € H with the property that they form a Schauder basisAoand so that for
any convergent infinite linear combination,, oz, («, € K for all n) we have

2
A E anTy, E Xy,
n n H

for some fixed4, B > 0.

Every Riesz basis fal can be got by applying an invertible continuous linear
map7: H — H to some orthonormal basis &f and so we can view a Riesz basis
as an orthonormal basis which has been somewhat distorted.

The more general concept of a frame was first introduced by Duffin and Scha-
effer in 1952.

2

<> Ja|*<B
H n

Definition 3.3.1 A sequencér,, ), of elements of a Hilbert spadé is called a
framefor H if there are constantsl, B > 0 so that

Allelf <) e, za) P < Bl

n=1

holds for allz € H.
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Examples 3.3.2 (i) A wavelet framdor L?(R) is a frame of the type

(ii)

{a™"*Y(a™"t — mb)}pmez
for a fixedy € L*(R) and some: > 0, b # 0.

Relatively uninteresting examples of frames can be generated from orthonor-
mal bases, e,, ... by listing each basis vector a finite number of times

in the frame. For exampley, e, es, €9, €3, €3, ... (Where each is repeated
twice) is a frame withA = B = 2.

A frame with A = B is called atight frame and a frame which ceases to

be a frame on removal of one vector from the sequence is callexaut
frame. The frame generated from an orthonormal basis by

11
V2 Ve

is tight with A = B = 1 but is not exact.

€1,€2,€3,€4,...

To make a connection between frames and bases, we introduce the coefficient
operatorlU: H — ¢? associated with a frame , z», . .. in H given by

Ur = ((z,x,))02, € 2

What we know is that

Allz|f < |Uz|z = (Uz,Uz) = (U"Uz,2)n < Bllz||%

and this implies thal/*U : H — H is a positive bounded linear operator &in
(in the sense of positive definiteness thdtUx, z)y > 0 for all x € H). Also
U*U satisfies the inequalitiés

Aidy <U"U < Bidy

in the sense that the differencesU — Aidy and Bidy — U*U are positive
operators. Moreover we can compute

o0

UUz = Z(w, Tp)Tp

n=1

We callU*U theframe operatorand denote it bys.

2idy denotes the identity operatofl — H
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The frame operato$ is invertible and ifx € H we can show

iS T, T ) Ty, i(x,zn>5_lxn
n=1 n=1

With a frame we do not have to have linear independence in general, but we
can show an optimality property for thfé norm of the coefficients in the above
canonical expansion of in terms ofx,, (with coefficients(S~'x,z,)). If = =
> | a,x, for some scalara,,, then

D lanl =D US ™ ww) P+ D ST wa) —anl? > Y (ST @)
n=1 n=1 n=1 n=1

If we have a tight frame4{ = B) thenS = Aidy and

(T, Ty) Ty

K

I
| =
NE

1

n

By scaling the frame, we can arrive at one whdre= 1. Everyx € H has a
representation in terms of such a frame which has many of the properties of an
expansion in terms of an orthonormal basis, except uniqueness.

For non-tight frames, the necessity to compite to arrive at a concrete
representation far € H is an obstacle to the practical use of such frames.

Proposition 3.3.3 Suppose) € L'(R) has the property thaf()(£) has no
zeros forl < |¢] < k for somek > 2. Then the set

{2M2(2"t — 2"m) : n,m € 7}

is a frame inL?(R).
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4 Wavelets via Multiresolution Analysis

In this section we take a more restrictive approach to wavelets, which leads to a
more effective approach in practice than the frame-based approach.

4.1 Multiresolution analysis onR

Looking at the Haar wavelet example, we have the discrete version where every
f € L*(R) can be expressed

f - Z <f7 77Z)2",2"'m> 7~/)2",2"m

n,mezZ

7ﬂzn,znm(t) = o/ (X[Q*"m,Q*"(m—&—l/Q) - X[Q*”(m+1/2),2*”(m+1))

For a fixedn we see functions constant on intervals of lengjth—! (and all the
functions have integral 0). Recall that we can haysositive and negative so that
we get short as well as long intervals.

If we take

W,, = spa{¢a—n 9-np, : m € Z} V, = spaf{g-r gk, - k,m € Z, k < n}

(we take the closed linear spans), then we can deduce from orthonormality and
the fact the the)yn on,,, form a basis that

{0}=(V» ¢ --cVacVcVicVC--
nez
C U V,, dense inL*(R) (2)
neL
f)eVe = [(2) € Vi 3)
Vi, = VoW,
(orthogonal direct sum) 4)
v _ span{ functions (ionstaqt on interval?
" of length2~" starting at)
functions constant on intervals
W, = span of length2—"~! starting ai)

and which average on the intervals
of length2—"

See Figurel for a graphical view of this. In Figurg, we try to show what
happens when we build up linear combinations/ef 5., starting withn = 1
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A selection of graphs af ,,,, A selection of graphs af, /5,
m=—2,0,2 b=-1,0,1,2

Figure 1: Haar wavelets at different scales

1.5 1.5 —
1 1
0.5 0.5
= 1.5 = = “lps 2 =
-1 -1
-1.5 -1.5
1.5 1.5 I_rr
1 | 1 I
0.5 0.5 ,J"J

Figure 2: Combining Haar wavelets at finer scales

(constant on intervals of length and then adding some more terms (with smaller
coefficients) withn = 0, —1,—2. The additional terms affect the details of the
graph. In fact, we show successive approximatior&:to- 1) xo1)(x), first using
19,0, then adding a combination @f ,,,, next adding a combination of; / (1 /2,
etc.

We take the point of view thalt,, is what one can see if one is restricted to
taking averages over (dyadic) blocks of lengf2” (blocks[k/2", (k + 1)/2")).

A sequencéd/, of subspaces oh?(RR) with the properties?) and @) is called
amultiresolution analysisf L?(RR).

In the example at hand, we have one additional key property, that alf,the
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are spanned by the integer translates of one function. For example
Vo is spanned by the translatege — m) (meZ) (5)

of the functiong(t) = xp,1)(t). In fact these form an orthonormal basis 16y
(which is even more convenient). Then propeflyifplies thatgs—n o-np, (1) =
2"2¢(2"t — m) (m € Z) form an orthonormal spanning sequence ¥or(all
n € 7).

Moreover, the orthogonal compleméit, ; of V,,_; insideV, is also spanned
by the translates of one functiofyy—n+1 3-n+1,, : m € Z}.

It turns out that, in general, we can deduce tiiatis spanned by the translates
of one function based on the fact thd},((3), (4) and 6) hold. We have

() € Vi = Spar{d1/o,m/a(t) = V2¢(2t —m) : m € Z}

and since the/24(2t—m) are orthonormal, this means we must be able to express

¢ = Z<¢a ¢1/2,m/2>¢1/2,m/2 = Z Cm¢1/2,m/2'

meZ meZ
Indeed, in the particular Haar case we were considering, we have

1

6(0) = 620) + (2t = 1) = Ss120(t) + %gm/m(n

and notice that we also have
1 1
V2 V2

It turns out in general that something similar happens.

Y(t) P1/2,0(t) B1/2,1/2(t)

Theorem 4.1.1 SupposéV,,),.cz is a sequence of subspaced.6fR) which form
a multiresolution analysis (that is, they satisB) &and (3))) and suppose thabj
holds for a functiony with orthonormal translateg(t — m) (m € Z).

(i) Then we must have

Z |Cm|2 =1 for ¢, = (@, d1/2.m/2)

meZ

and
Zcmm:OforO;&éeZ (6)

meZ
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(i) If we define
Y= Z(_l)mm(%/z,mm
meEZ
theny € V; and it is orthogonal td/.
Moreover the translates, ,,, (m € Z) form an orthonormal basis for the

orthogonal complement df; in V; and the whole collection of translated
and scaled functions

{’lp2n72nm . n,m - Z}
based ony is an orthonormal basis fof.?(R).

(i) If we assume that € L'(R) N L*(R), [, ¢(t) dt # 0 and{m : ¢,, # 0} is
finite, then we have

Dot = V2 W)
FO©) = PE/AF@)E) ®
whereP(¢) = ) c,e”™m
F(@)©) = ) [T P(g/2% (9)

Proof.
(i) The first part follows from orthonormality af(¢t — m) and the second by
expanding¢(t), o(t — £)) = 0interms ofp = Y . c;n01/2.m/2-
(i) We can express
Yt — 1) = Z(_1)mcl—(m+2€)¢1/2,m/2(t)
meZ
and so expand

(D), 0t — 0) = 3 (—1)"emer_msany = 0

me”Z

(since then and1 — m — 2¢ terms have opposite signs).
The orthonormality of the), ,,, follows by (i).

To show that they span the orthogonal complememgafh 17, suppose €
V1 is perpendicular td; and to alk)y ,,,. We canwritef = > frnd1/2.m/2 =
S ezl fr 1/2.m/2)P1/2.m/2 @nd let us denote the sequence of coefficients of
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f by F = (fn)mez. Suppose we also denote By = (c¢,—2¢)mez the
coefficients ofp(t — () = ¢1, and by¥,, = ((=1)"C1_(miaw)),, ., the
coefficients ofy)(t — k) = 1, x(¢) in the same basis fdr.

me

Consider the matri®/ that has as its columns
(' c ¢17 \Ijlv q)Oa 11107 ©—17 \Ij—lv ¢—2a . )

These columns are orthonormal by the earlier parts of the proof. The matrix
M represents a linear operator 6m(where we takeZ as the index set for

the sequence space) that transforms the standard basis to the orthonormal
sequence given by the columns. When we compuité/ we get the iden-

tity matrix. But M*F = 0 by assumption and so what we wantig\/* to

be the identity.

If we breakM into 2 x 2 blocksM,., (r, s € Z) we get

Cor+42s Cos—2r+1
Mrs = ( —_—

Cor42s+1 —Cos—2r

and if we work outM M* we get the matrix made up of the blocks

> M, (M)
;

. Z Cor425  C2j—2r+1 Cos425  C2s542j4+1
Z Cor42j+1 —C25—2r Coj—2s+1 —C2j-2s
Zj(62r+2j628+2j + Coj—2r41C2j—25+1)
Z]’(62r+2jc2s+2j+l - CZj—2r+1c2j—25)

Zj(027"+2j+1625+2j - CQj—erQj—25+1)

Zj<62r+2j+1025+2j+1 + Coj—2rCoj—25)
B Ors O
0 67"3

(The off-diagonal sums rearrange icand the orthogonality relation$)(
show that the diagonal entries are 0 unless s, when they ard by (i).)
HenceM M* is the identity, " = MM*F = 0 and sof = 0. Thus the
collection{¢; ,,, : m € Z} U{¢1,, : m € Z} is a maximal orthonormal
subset (an orthonormal basis)Gf.

Since; 4 is orthogonal tap, it follows that (¢ s, ¢1.m) = (V14-m. @) =0
forallm. As ¢y = >,z Cm®P1m it fOllows that (v ¢, ¢20) = 0.

Iterating these ideas, we can show that »-,,, are all orthonormal. Since
Mnez Vo = {0} we can show that any € V;, which is orthogonal to all
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Yan ony (> —k) must be zero anél)on on,p, : 1 > —k} is an orthonormal
basis forV},. Using density of J,,_, V;, in L*(IR) we can show thaby» o,
form an orthonormal basis df*(R).

(iii) Integrating both sides af = ", cn01/2.m/2 Qives (7). Taking Fourier
transforms of both sides give8)( Iterating @) gives

F(9)(€) = F(o)(&/2") [ ] Ple/2")
k=1
and lettingn — oo gives Q).

4.2 Daubechies wavelets

By Theorem4.1.], we can find wavelets if we can find finitely nonzero sequences
of coefficientsc,, that satisfy the conditions of part (i) of that theorem aig (
There is another step required, to show that the infinite produ®) kofiverges to
the Fourier transform of a function ib'(R) N L?(R) with nonzero integral. This
step usually works because of results which we will not explain and the resulting
¢ (andt)) will be compactly supported in most cases.

The functiony is the basic wavelet (sometimes called the ‘mother wavelet’)
resulting from the multiresolution analysis and thes a generating function that
is sometimes called the ‘father function’, but also known assttaing function

Examples 4.2.1 (i) If we allow only two non-zero coefficients andc,, then
the conditions we have force us to have the Haar wavelet situation.

Allowing a possible nonzerg, as well asy andc; still reduces to the Haar
wavelet situation.

(i) Daubechies showed that there are a family of choices of coefficignts . . ., cop—1
(p > 1) that lead to continuous compactly-supportedand continuous
compactly-supported wavelets). Adncreases the corresponding wavelet
becomes more differentiable.

Forp = 2 she exhibited

1+V3 3+v3  3-V3 1-V3
Co = 4\/—,1 4\/5
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4.3 Higher dimensions

Generalisations t&? often require the use af — 1 wavelets and not just one. So
3 wavelets foiR?, for example.

The simplest approach is to take a waveletrising from a multiresolution of
L?*(R) and its associated scaling function Then we consider the wavelet basis
of L?(R?) given by

{¢§Uf72nm n e Z, m € Zz} U {1/J;g72nm} U {'(/J;Un’ltjgnm}

where

V() = (x)oly), ¢(z,y) = o(@)Y(y), V(x,y) = Y(x)d(y)

are ‘tensor products’ of the wavelgtin one variable with the scaling function
or with ¢/ in the other variable.

This corresponds to a multiresolution analysisZ/3{R?) which respects the
dilationsz — 2z and the translations — z + b with b € Z2.

One can replace the dilation— 2x by x — Az where A is a matrix with
integer entries which is expansied"z|| — oo asn — oo for eachd # x € R?).
The number of wavelets required is thedet(A)| — 1 and this can be 1, for

example if
1 -1
=17

Although only 1 wavelet may be needed, there are semghere there is no
scaling function to generate a multiresolution analysis and there do not seem to be
effective algorithms with such approaches.

5 Applications and Concluding Remarks

There have been a vast range of practical applications of wavelets.

There are effective algorithms for dealing with orthonormal wavelets that arise
from a multiresolution analysis. All the calculations are done in terms of the
coefficients;,,,.

Practical applications normally rely on a finite-dimensional version of the
wavelet basis, similar to the way the Discrete Fourier Transform (DFT) works.
There is a Fast Wavelet Transform algorithm to rival (or even surpass) the Fast
Fourier Transform (FFT) algorithm for computing the DFT.

Wavelets are applied in removing high-frequency noise from signals and in
trying to identify strong features of signals. Strong features (such as steep slopes
or discontinuities) will normally result in significant magnitudes for the wavelet
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coefficients at that point for many different scales. Similarly high frequency noise
will normally only produce significant wavelet coefficients at one scale at each
position.

The most spectacular uses are in image analysis and the big success story of
wavelets with respect to images was its adoption by the FBI as a standard for
compressing digital fingerprint images. An image (in one colour or grayscale)
may be regarded as a function of a position in the planar image, with the value
of the function being the brightness or intensity of the image at that point. Using
2-dimensional wavelets, one can express the function by its wavelet coefficients.

To compress the image, one discards some of the smaller coefficients and
stores or transmits only the ‘important’ ones. If this is done in a clever way and
if one uses a cleverly selected set of wavelet coefficienty (hen high compres-
sion rates can be obtained without much loss of quality.

Apart from the fingerprints, there is a new JPEG2000 standard that is intended
to supplant the JPEG version now used for storing many images on computers.
(JPEG is based on an algorithm that uses the Discrete Cosine Transform, a variant
of the DFT).

On a more mathematical front there are orthonormal wavelet bases that form
unconditional bases for Banach spaces of functions sudt @) and L?[0, 1]

(1 < p < o0). See []. For the Fourier series case, we get only a conditional basis
for LP[0,1] (1 < p < o0, p # 2).

Wavelets have certain apparent disadvantages compared to Fourier series and
transforms. The wavelets are not eigenfunctions for differentiation and they do
not behave especially well with respect to convolutions. However, some results
remain valid that seem to suggest that differentiation is ‘almost diagonal’ when
expressed in a wavelet basis. See the characterisations of Sobolev spaces in terms
of coefficients with respect to a wavelet basig)][

The number of potential applications of wavelets in signal processing, image
analysis and compression, sound wave analysis, numerical solution of differen-
tial equations and noise reduction is very large and there is a vast literature on
wavelets. Not all potential applications seem to have succeeded, possibly because
the right approach or the right wavelet has not been found. Another explanation
is that wavelet-like techniques were already standard techniques in some fields
like recognition of shapes in digital images, even before the term ‘wavelet’ was
identified around 1988.

Current research on applications of wavelets is very active and, on the theoret-
ical front, there are various more complex variants of wavelets being investigated.
Also the n-dimensional versions of wavelets (associated with matrix dilations)
seem to pose some unresolved problems.
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