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Abstract

We introduce wavelets as a particular way of choosing bases in function spaces.
The concept of a multiresolution analysis provides a setting for constructing

certain wavelets and where practical algorithms have been developed. The con-
structions and the algorithms depend on a sequence of coefficients.

The term ‘wavelet’ is a relatively new term and most of the ideas are new, but
there is a very active interest in using wavelet techniques in applications. We will
mention some of these uses.



1 Introduction: A Review of Bases

In this section, we review briefly some concepts of basis and also recall the notion
of a Fourier series.

1.1 Vector spaces and algebraic bases

The most familiar context for bases is in linear algebra. IfV is a vector space over
any fieldK, then abasisfor V is a subsetB ⊂ V such that every vectorv ∈ V
can be expressed uniquely as a finitely nonzero sum

v =
∑
b∈B

vbb (vb ∈ K∀b ∈ B, {b ∈ B : vb 6= 0} finite)

Every vector space has a basis. We will refer to this type of basis as analge-
braic basiswhen we need to make a distinction with other types of bases to be
introduced below.

Choosing a basisB for an n-dimensional vector spaceV and an ordering
B = {b1, b2, . . . , bn} for the basis is equivalent to choosing a linear isomorphism

: K
n → B

(α1, α2, . . . , αn) 7→
n∑
j=1

αjbj

The fact that a given vector space will have many different bases (unless it is
{0}), can be viewed as an advantage because it often allows us to choose a basis
that adapts to the problem at hand. A simple example is the ability (in good cases)
to choose a basis of eigenvectors for a given linear transformationT :V → V .

Though bases always exist in theory, there are many infinite-dimensional cases
of interest where one cannot write down any basis explicitly.

1.2 Finite-dimensional inner product spaces and orthonormal
bases

Notation 1.2.1 From now on the symbolK is reserved for a field which can only
be either the realsR or the complex fieldC.

When given a finite-dimensional vector spaceV over K equipped with an
inner product〈·, ·〉:V ×V → K, it is very convenient to work with anorthonormal
basisB = {e1, e2, . . . , en} (satisfying〈ej, ek〉 = 0 for j 6= k and〈ej, ej〉 = 1 for
all j (1 ≤ j, k ≤ n)).

1
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Then every vector can be expressed in terms of the basis in a computable way

v =
n∑
j=1

〈v, ej〉ej (v ∈ V ).

(Our notation is that inner products are linear in the first variable, and conju-
gate linear in the second variable in the complex case.)

An (ordered) orthonormal basis for a finite-dimensional inner product space
(V, 〈·, ·〉) gives us an inner-product preserving linear isomorphism fromK

n with
the standard (euclidean) inner product toV .

For hermitian linear operatorsT :V → V on a finite-dimensional inner product
space (〈Tv, w〉 = 〈v, Tw〉 for all v, w ∈ V ) we can always find an orthonormal
basis of eigenvectors.

1.3 Banach spaces and Schauder bases

Recall that aBanach spaceconsists of a vector spaceX over K equipped with
a norm‖ · ‖X so thatX is completein that norm (every Cauchy sequence inX
converges to a limit inX). Convergence inX is taken with respect to the metric
(or distance) associated with the normd(x1, x2) = ‖x1 − x2‖X .

With a norm we can contemplate infinite linear combinations, when we define
infinite sums via limits, as in

∞∑
n=1

xn = lim
n→∞

n∑
j=1

xj

Definition 1.3.1 A Schauder basisfor a Banach spaceX is a sequence(en)∞n=1

of vectors inX such that everyx ∈ X can be expressed uniquely as an ‘infinite
linear combination’

x =
∞∑
n=1

xnen (with xn ∈ K∀n)

Examples 1.3.2 (i) The classical sequence spacesc0 and`p (1 ≤ p <∞) have
as bases the ‘standard basis’(en)∞n=1, where

en = (δnj)
∞
j=1

(δnj = 0 if n 6= j while δnn = 1 for all n).
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`p (1 ≤ p <∞) is the space of all sequences(αj)
∞
j=1 (αj ∈ K∀j) such that

∥∥(αj)
∞
j=1

∥∥
p

=

(
∞∑
j=1

|αj|p
)1/p

<∞.

c0 consists of all sequences(αj)
∞
j=1 such thatlimj→∞ αj = 0 with the supre-

mum norm ∥∥(αj)
∞
j=1

∥∥
∞ = sup

1≤j<∞
|αj|

(ii) The function spacesLp[0, 1] andLp(Rn) are defined (somewhat) similarly
to `p except that they are (almost everywhere equivalence classes of) mea-
surable functionsf on the domain which have|f |p integrable with respect
to Lebesgue measure.

Bases are not such a convenient idea for general Banach spaces. Only sepa-
rable Banach spaces can have a basis and many separable Banach spaces fail to
have a basis.

In general the order of summation in the infinite linear combination is impor-
tant, and this inhibits one from considering a more general kind of basis where
uncountably many basis vectors could be allowed. To remove dependence on the
order, one can consider unconditional bases, but even fewer Banach spaces have
these than have Schauder bases.

As in the vector space case, things are considerably simpler if one assumes that
the there is an inner product. However, in the vector space case inner products can
always be chosen (not necessarily in a useful and natural way) but in the Banach
space case the existence of a compatible inner product is a severe restriction.

1.4 Hilbert spaces and orthonormal bases

Recall that aHilbert spaceis an inner product space(H, 〈, ·, ·〉H) which is com-
plete (a Banach space) is the associated norm given by‖x‖H =

√
〈x, x〉H .

Common examples areL2[0, 1] andL2(Rn) with the inner product given by

〈f, g〉 =

∫
fḡ

(integrals with respect to Lebesgue measure).
Every Hilbert spaceH has anorthonormal basisin a sense that involves con-

vergence. In the Hilbert space case an orthonormal basis may be defined as a
maximal orthonormal subsetB ⊂ H — a set consisting of unit norm pairwise
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orthogonal elements ofH with the property that it is not a proper subset of any
other such set.

Given any orthonormal basisB for H, we can write everyx ∈ H as

x =
∑
b∈B

〈x, b〉Hb

in the sense that there are at most a countable number of nonzero terms in the
summation and for any enumeration

{b ∈ B : 〈x, b〉H 6= 0} = {b1, b2, . . .}

of the nonzero terms, we have

x = lim
n→∞

n∑
j=1

〈x, bj〉Hbj.

(No limit is needed if there are only a finite number of nonzero terms.)
Moreover, we have a convenient representation of the norm onH in terms of

the basis coefficients

‖x‖H =

√∑
b∈B

|〈x, b〉H |2

1.5 Fourier series

From now on, we will typically considerC-valued function spaces.

Example 1.5.1 For H = L2[0, 1] there is a very simple orthonormal basis that is
so frequently used that it is almost the standard basis. It is{en : n ∈ Z} where

en(t) = exp(2πint)

From the general theory, we know that everyf ∈ L2[0, 1] can be expressed as
a sum

f =
∑
n∈Z

〈f, en〉en

with convergence of the sum inL2-norm. This is normally known as theFourier
seriesof the functionf and we often write

f̂(n) = 〈f, en〉 =

∫ 1

0

f(t) exp(−2πint) dt.
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It is also common to write

Snf(t) =
n∑

j=−n

f̂(j) exp(2πijt)

for certain (symmetrical) partial sums of the series and the general Hilbert space
theory tells us that for allf ∈ L2[0, 1] we have

lim
n→∞

‖f − Snf‖2 = 0

but it is a much deeper result due to Carleson that we also have almost everywhere
convergence ofSnf(t) to f(t).

Forf ∈ Lp[0, 1] and1 < p <∞ one also knows that

lim
n→∞

‖f − Snf‖p = 0

so that the exponentialsen also form a Schauder basis forLp[0, 1].
They donot form a basis forL1[0, 1] or forC[0, 1] = the continuous functions

f : [0, 1] → K (with the supremum norm). What we can say however is that for
f ∈ L1[0, 1], there is enough information in the Fourier coefficients(f̂(n))n∈Z to
completely determinef , but it is difficult to determine whether a given sequence
(an)n∈Z is the sequence of Fourier coefficients of some (unknown) functionf ∈
L1[0, 1].

Remark 1.5.2 Why do we use Fourier series?
One may justify the choice of the Fourier series example of an orthonormal

basis forL2[0, 1] on the basis that it has proved its value over time, but one may
also argue that the complex exponentialsen(t) = exp(2πint) are ‘eigenvectors’
of the differentiation operatord

dt
.

Perhaps there is a slight problem because the operator is not globally defined
:L2[0, 1] → L2[0, 1] and there are other eigenvectorseλ(t) = exp(2πiλt) with
λ ∈ C.

However, one may argue that the right context is to deal with is that of periodic
functions (having 1 as period). For this, we extend all functionsf ∈ L2[0, 1]
periodically toR by discarding the value at 1 and extending from[0, 1) to R using

period 1 (f(x)
def
= f(x− [x]) with [x] the greatest integer≤ x). At least the terms

of the Fourier series are naturally periodic in this way and theen are the 1-periodic
eigenvectors of differentiation.

In the context of periodic functions, one can argue that we are actually dealing
with functions on the unit circle of the complex planeT = {exp(2πit) : t ∈
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R} = {exp(2πit) : t ∈ [0, 1)} and in this case the complex exponentialsen may
be viewed as the irreducible unitary representations ofT.

There is a generalisation of the Fourier theory toL2(G), for G a locally com-
pact abelian group. We define theL2 space with respect to Haar measure onG
(normalised to giveG measure 1 in the caseG is compact) and then we have a
‘Fourier series’ representation of everyf ∈ L2(G) where the series is indexed by
the setĜ of irreducible unitary representations ofG in place ofZ.

2 Fourier Transform

We will continue in this section to considerC-valued function spaces. However, at
some places it will be convenient to assume that a givenf ∈ L2 to be represented
is actuallyR-valued. Most of the remarks where this assumption is invoked can
be adapted by linearity or other means to the case of general complex valuedf .

We progress to consider Fourier series where the period is not 1 and from
there, by a limiting argument, we arrive at the Fourier transform onR. We then
deal with some of the limitations of the Fourier transform as a preparation for
motivating the notion of a wavelet later.

2.1 Fourier series on general intervals

We can transfer the theory of Fourier series on the unit interval[0, 1] to any other
interval [a, b] (a < b ∈ R) by a simple change of variables. We have an isometric
(and inner product preserving) map

:L2[0, 1] → L2[a, b]

f 7→
(
s 7→ 1√

b− a
f

(
s− a
b− a

))
and so a way to transfer Fourier series toL2[a, b].

Specialising to the case[a, b] = [−T, T ] we have that for eachg ∈ L2[−T, T ],

g(s) =
∑
n∈Z

ĝ(n)

(
(−1)n√

2T
exp

(
2πins

2T

))
with

ĝ(n) =
(−1)n√

2T

∫ T

−T
g(s) exp

(
−2πins

2T

)
ds.
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2.2 The Fourier transform

Combining these last two together, we can say

g(s) =
∑
n∈Z

1

2T

(∫ T

−T
g(t) exp

(
−2πint

2T

)
dt

)
exp

(
2πins

2T

)
for g ∈ L2[−T, T ].

If we takeg ∈ L2(R) with compact support then we have

g(s) =
∑
n∈Z

1

2T

(∫ ∞
−∞

g(t) exp

(
−2πint

2T

)
dt

)
exp

(
2πins

2T

)
for all T large.

If we now define a functionF(g) by

F(g)(ξ) =

∫ ∞
−∞

g(t) exp(−2πiξt) dt

we have

g(s) =
∑
n∈Z

1

2T
F(g)

( n

2T

)
exp

(
2πins

2T

)
By treating this summation as a Riemann sum for an integral and taking the

limit asT →∞ we can justify

g(s) =

∫ ∞
−∞
F(g)(ξ) exp(2πiξs) dξ (1)

for g ∈ L2(R) compactly supported. In fact, the formula (1) holds for allg ∈
L2(R).

The mapF is called theFourier transformon R and it can be proved (Parse-
val’s theorem) thatF :L2(R)→ L2(R) is an isometric isomorphism. The formula
(1) is theFourier inversionformula, which exhibits the inverse transform as being
almost of the same form asF (in fact it is the adjoint ofF).

In the Fourier series case, functions on[0, T ), or periodic functions with pe-
riod T , are exhibited as superpositions of exponentialst 7→ exp(2πnt/T ) (with
periods a multiple ofT ). For the infinite line, we no longer have this granularity of
the periods and we need almost all possible periods1/ξ for the Fourier inversion
formula. We can argue that the continuous range of periods used implies that the
summation in Fourier series becomes an integral in the case ofR. But we can still
think of everyf ∈ L2(R) as being given by a ‘superposition’ of exponentials.
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We can view these exponentials as being all the bounded eigenfunctions of
the derivative operator onR and this gives a clue to important applications of the
Fourier transform in differential equations.

We can also view the Fourier transform from the group-theoretical point of
view. Then the dual group ofR (that is, the space of irreducible unitary represen-
tations) is againR — if we identify ξ ∈ R with the one dimensional representation
of R given by its matrix ast 7→ exp(2πiξt).

For future reference note thatt 7→ exp(2πiξt) is periodic with period1/|ξ|.
We can say it repeats|ξ| times whent increases by 1, and this justifies saying that
it hasfrequency|ξ| (measured in cycles or repetitions per unit oft).

2.3 Shannon-Nyquist sampling

For applications to digital communication, it is important to consider sending a
signal over a channel which is limited in frequency range. One can communicate
over such a channel only signalsf(t) with the property that the Fourier transform
Ff is supported inside the range of the channel. By a simple phase change of
the signal (multiplying by a suitable complex exponentialexp(2πiξ0t)), we may
assume that the channel can carry frequencies in the range[−W/2,W/2].

Now, if we takeg = Ff , we can reconstructg from its Fourier series

g(ξ) =
∑
n∈Z

ĝ(n)

(
1√
W

exp

(
2πinξ

W

))
(|ξ| < W )

where1

ĝ(n) =
1√
W

∫ W/2

−W/2
g(s) exp

(
−2πins

W

)
ds

=
1√
W

∫ W/2

−W/2
F(f)(s) exp

(
−2πins

W

)
ds

=
1√
W

∫ ∞
−∞
F(f)(s) exp

(
−2πins

W

)
ds

(using the fact thatF(f)(s) = 0 for |s| > W/2). This should be(1/
√
W )f(−n/W )

by the Fourier inversion formula. However the Fourier inversion formula is a
formula in L2(R) and so cannot be applied pointwise in general. It turns out
(see below) that band-limited functions are automatically continuous, and then

1Strictly speaking we should have some factors(−1)n in ĝ(n) and also on the exponentials
above, but we have canceled these signs.
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we can justify this pointwise application of the inversion formula. We can show
ĝ(n) = (1/

√
W )f(−n/W ). Thus the Fourier series formula says

F(f)(ξ) =
∑
n∈Z

f

(
−n
W

)(
1

W
exp

(
2πinξ

W

))
(|ξ| < W )

and using the Fourier inversion formula (plus the assumption thatf is band-
limited) we can show the following result.

Theorem 2.3.1 If f ∈ L2(R) is band-limited so thatF(f) is supported in[−W/2,W/2],
thenf is completely determined by its valuesf(n/W ) (n ∈ Z) and in fact

f(t) =
∞∑

n=−∞

f(n/W )
sin(π(n−Wt))

π(n−Wt)

This can be interpreted to mean that if a channel is band-limited to a frequency
band of total widthW (or limited by |ξ| < W/2), then we cannot transmit a
continuous function along the channel, but only one value every time interval
1/W .

2.4 Compact support

We can be tempted from looking at band-limited functions (compact support of
the Fourier transform) to consider compactly supported functions, but we cannot
have both compact support forf andF(f) simultaneously. This is a consequence
of the following theorem.

Theorem 2.4.1 (Paley-Wiener)If f ∈ L2(R) has compact support then its Fourier
transformF(f)(ξ) (ξ ∈ R) extends to be an analytic functionζ 7→ F(f)(ζ): C→
C (or an entire function).

In fact this entire function must be of exponential type, that is it must satisfy

|F(f)(ζ)| ≤ AeB|ζ| (ζ ∈ C)

for some constantsA,B ≥ 0.
Moreover, the (restrictions toR of) entire functions of exponential type are

exactly the Fourier transforms of compactly supported functions inL2(R).

A similar result applies to the inverse Fourier transform, so that the band-
limited functions are those that are restrictions toR of entire functions of expo-
nential type.
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As an entire function cannot be zero on any interval of positive length, unless it
is identically zero, it follows thatf andF(f) cannot both be compactly supported.

A quantitative form of this fact can be stated for functions which are somewhat
localised in time and have Fourier transforms that are somewhat localised as well.

For f ∈ L2(R) normalised to have unit norm (‖f‖2 = 1 or
∫

R
|f(t)|2 dt = 1)

we can treat|f(t)|2 as a probability density function onR. Then we can try to
compute the meanµ and varianceσ2 of this probability distribution.

µ =

∫
R

t|f(t)|2 dt, σ2 =

∫
R

(t− µ)2|f(t)|2 dt

We will certainly be able to do this for compactly supportedf ∈ L2(R), but
we will also succeed for more general (normalised)f ∈ L2(R).

As ‖F(f)‖2 = ‖f‖2 = 1, we can also contemplate the meanµ̂ and variance
(σ̂)2 of |F(f)|2.

Theorem 2.4.2 (Heisenberg uncertainty principle)If we havef ∈ L2(R) and
alsof ′(t), f ′′(t), tf(t), t2f(t) ∈ L2(R) and‖f‖2 = 1, then

σσ̂ ≥ 1

4π

We omit the proof of this, though it requires only some simple properties of
the Fourier transform, the Cauchy-Schwarz inequality and integration by parts.
See [1, Appendix F] for a proof.

2.5 Windowed Fourier transforms

A drawback of both Fourier series and Fourier transforms is that they destroy local
information. Both allow reconstruction of functions inL2 (andLp for certainp,
though the reconstruction is not possible by exactly the same elegant inversion
formula). But it is part of the nature of the Fourier transform that the whole
transform is needed to recover the function.

A simple example is provided by the characteristic functions of intervals[0, a).
By a simple computation the Fourier transform is

F(χ[0,a))(ξ) =
1− exp (−2πiaξ)

2πiξ

and we can see that a small shift ina affects the Fourier transform at eachξ.
In particular a relatively small localised change in the function requires a re-

calculation of the Fourier transform/series and the whole transform is likely to be
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altered by such a change. Similarly a small local change on the frequency side (a
small change of the Fourier transform) will normally affect the whole function.

One may analyse a signal or a sound wave such as a piece of music played over
a certain time by taking its Fourier transform. First we must consider the signal
(or sound wave) to extend over infinite time (perhaps by extending it with zero
backwards in time to−∞ and forwards in time to+∞). One may consider (and
this is typically done) the absolute value of the Fourier transform of the signal at
frequency±ξ to be a measure of the amount of the total amount of frequency|ξ|
present in the signal. (Assuming that the signal is a real one, we should combine
F(f)(ξ) exp(2πiξt) +F(f)(−ξ) exp(−2πiξt) to getA(ξ) cos(2πξ(t− t0)) with
amplitudeA(ξ) = 2|F(f)(ξ)| andphaset0.)

For example in the casef(t) = χ[0,a)(t), we get

A(ξ) = 2
sin(πaξ)

πξ
, t0 =

a

2
− 1

4ξ
.

The phase can be thought of loosely as representing a time shift in frequency
ξ, but it is not easy to interpret it directly as related to a beginning time as one
must consider the cancellation between all the terms to recover the signal. Thus
the Fourier transform of the sound wave from a piece of music must contain all
the notes as the original sound wave can be recovered from it. However, there is
no simple way to detect from the Fourier transform which notes were played at
which times.

In theL2 setting (or evenL1) we cannot handle a sound wave that consists of
a single note played with constant intensity for all time, but if we considered a
suitable generalisation (distributions) where such signals could be handled, then
the Fourier transformed signal would be concentrated at that one frequency. In
this way we can justify the interpretation of the amplitude as the ‘amount’ of a
given frequency present in a signal.

In an effort to also get a hold of local information, the windowed Fourier
transform takes the Fourier transform of many localised versions of the original
signal. We take a particular fixed functiong of compact support, such asg(t) =
χ[−1,1] or a smoother version. Then we translateg by arbitrary amounts to get
t 7→ g(t − a) and take the Fourier transform off(t)g(t − a). We get a transform
for each translation amounta

WF(f)(a, ξ) = F(f(t)g(t− a))(ξ) =

∫
R

f(t)g(t− a) exp (−2πiξt) dt

The definition ofWF depends on the choice ofg andg is known as thewin-
dow function. One may find strange effects caused by discontinuities or lack of
smoothness ofg and so choosing a smooth compactly supported window function
is desirable as a rule.
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The resultingWF does give local information about the functionf , at the
expense of introducing a ‘position’ parametera. For a fixeda we must be able
to find fromWF(a, ·) all the information aboutf in the support oft 7→ g(t− a)
(which is the support ofg translated bya).

However, the information is still not very easy to decode. We can say that
WF(f)(a, ξ) represents the amount of frequencyξ present in the graph off in-
tersection the window arounda, though there will be an effect from the shape of
the graph ofg also.

We can argue thatWF must be limited in its ability to localise because of
the Heisenberg uncertainty principle. Applying the window to getf(t)g(t − a)
certainly gives us a windowed signal with relatively small standard deviationσ,
but we do not always get good control onσ̂, the standard deviation on the trans-
form side. At the best, we could generate window functions whereσ̂ would be
proportional to the reciprocal of the width of the window.

One might argue that for a relatively high frequencyξ where the corresponding
period1/ξ is smaller than the window, we are in a reasonably good position to
detect whether there is a frequencyξ component inside the window. For relatively
small frequencyξ, and large period, we do not really have a big enough window
on the graph off to say that we are detecting any variation in the graph at that
frequency.

Of course, when we take the Fourier transform, we do see something at all fre-
quencies, including small frequencies, but we are really detecting features caused
by the zero-extension of the graph off(t)g(t− a) past the window.

At high frequencies, small periods, we have room for several oscillations in-
side the window and we are now back to a similar position to that we had with the
Fourier transformF(f)(ξ) where we are not able to say where within the window
the high frequency change inf happens.

If we managed to optimisêσ as roughly proportional to the reciprocal of the
width of the window, we would be able to do quite a good job of pin-pointing the
position of reasonably low frequency components off , but for higher frequencies
we could not expect to pin down the location except within a multiple of the
period, a high multiple in the case of high frequencies.

3 Wavelets via Frames

We continue the ideas introduced in studying the windowed Fourier transform to
get one approach to wavelets, perhaps the most general approach. Later we will
take a more restrictive setting where there are better computational algorithms
available.
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3.1 Continuous wavelet transform

If we take the discussion above a step further, it suggests that if we want to know
where we can find a component of frequencyξ in the graph off , we should not
expect to be able to answer unless we can consider a section (or window) of the
graph of length comparable to the period1/ξ.

We then take a window such as

ψ(t) =

{
sin(2πt) −1/2 < t < 1/2
0 t ≥ 1/2 or t ≤ −1/2

but we could take anyψ. Normally we assume thatψ is compactly supported,ψ ∈
L2(R) and

∫
R
ψ(t) dt = 0. We should think of the graph ofψ as a single ‘cycle’

of a more or less periodic wave, but we will often want additional properties such
as smoothness ofψ which will make this only approximately correct.

Instead of translating the wavelet around as we did for windows, we also scale
the wavelet to give stretched versions of the original waveletψ with the same basic
shape but at different scale or frequency.

We define

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
(a > 0, b ∈ R)

and this will give us a single ‘wavelet’ with support stretched toa of its previous
length, frequency1/a times the original frequency in some sense. (The factor
1/
√
a is not really essential, but it is there to preserveL2 norms —‖ψa,b‖2 =

‖ψ‖2.)
Instead of imposing a further frequency on this, we just consider its inner

product with a givenf .

Definition 3.1.1 Thecontinuous wavelet transformof f ∈ L2(R) corresponding
to a choice of ‘wavelet’ψ is

W (f)(a, b) = 〈f, ψa,b〉 =

∫
R

f(t)
1√
a
ψ

(
t− b
a

)
dt (a > 0, b ∈ R).

The key to the continuous wavelet transform is that we can chooseψ so that
W (f)(a, b) contains enough information to reconstruct the functionf . The sim-
plest example where this is possible is called theHaar Wavelet

ψ(t) =


1 0 ≤ t < 1/2
−1 1/2 ≤ t < 1
0 t ≥ 1 or t < 0
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Theorem 3.1.2 (Inverse wavelet transform)If ψ ∈ L1(R)∩L2(R) is real-valued
and satisfies theadmissibility condition

cψ =

∫ ∞
0

|F(ψ)(ξ)|2

ξ
dξ <∞

then forf ∈ L2(R)

‖f‖2 =
√
cψ

(∫
(a,b)∈(0,∞)×R

|W (f)(a, b)|2 da
a2
db

)1/2

For f ∈ Lp(R) (1 < p <∞)

f(t) =
1

cψ

∫
(a,b)∈(0,∞)×R

W (f)(a, b)ψa,b(t)
da

a2
db

(if the integral is interpreted in a distributional sense).

We will not try to prove this result.
Notice that the Haar wavelet has Fourier transform

F(ψ)(ξ) =
(1− exp(−πiξ))2

2πiξ

and it is admissible.
It is easy to see that a compactly supportedC∞ functionψ with

∫
R
ψ(t) dt = 0

is ‘admissible’ because the Fourier transform of any such function will be analytic,
have a zero atξ = 0 and decay faster than any power of1/|ξ| as|ξ| → ∞.

3.2 Discretisation of the CWT

In the case of the Haar wavelet at least, it is easy to see that there is a great
redundancy of information inW (f)(a, b). Among theψa,b, those witha = 1
contain an orthonormal set inL2(R):

{ψ1,m : m ∈ Z} = {χ[m,m+1/2) − χ[m+1/2,m+1) : m ∈ Z}

This is clearly not an orthonormal basis because no function can be expressed in
terms of these unless it is constant on the intervals with endpoints at adjacent half
integers.

However, the orignal work of Haar showed that

{ψ2n,2nm : n,m ∈ Z}
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does form an orthonormal basis forL2(R). Thus we can express everyf ∈ L2(R)
as

f =
∑
n,m∈Z

〈f, ψ2n,2nm〉ψ2n,2nm =
∑
n,m∈Z

W (f)(2n, 2nm)ψ2n,2nm

from the general theory of orthonormal bases in Hilbert spaces.
This has been known and used by various authors since Haar invented it, but

it has not had so many applications because the basis functions are not continuous
and not well suited to many applications.

What is new in the wavelet context is that we can use other admissibleψ
which have good behaviour in many ways. We can even find much more regular
(for example continuous or continuously differentiable)ψ so that

{ψ2n,2nm : n,m ∈ Z}

forms an orthonormal basis forL2(R).
For some purposes, we might be happy with less, a discrete set of points

(an, bm) which are sufficient to recoverf fromW (f)(an, bm).

3.3 Frames

There are a number of ways to generalise the concept of an orthonormal basis in
a separable Hilbert space.

One generalisation, known as aRiesz basis, allows for a sequence of vectors
xn ∈ H with the property that they form a Schauder basis forH and so that for
any convergent infinite linear combination

∑
n αnxn (αn ∈ K for all n) we have

A

∥∥∥∥∥∑
n

αnxn

∥∥∥∥∥
2

H

≤
∑
n

|αn|2 ≤ B

∥∥∥∥∥∑
n

αnxn

∥∥∥∥∥
2

H

for some fixedA,B > 0.
Every Riesz basis forH can be got by applying an invertible continuous linear

mapT :H → H to some orthonormal basis ofH and so we can view a Riesz basis
as an orthonormal basis which has been somewhat distorted.

The more general concept of a frame was first introduced by Duffin and Scha-
effer in 1952.

Definition 3.3.1 A sequence(xn)∞n=1 of elements of a Hilbert spaceH is called a
framefor H if there are constantsA,B > 0 so that

A‖x‖2H ≤
∞∑
n=1

|〈x, xn〉|2 ≤ B‖x‖2H

holds for allx ∈ H.
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Examples 3.3.2 (i) A wavelet framefor L2(R) is a frame of the type

{a−n/2ψ(a−nt−mb)}n,m∈Z

for a fixedψ ∈ L2(R) and somea > 0, b 6= 0.

(ii) Relatively uninteresting examples of frames can be generated from orthonor-
mal basese1, e2, . . . by listing each basis vector a finite number of times
in the frame. For examplee1, e1, e2, e2, e3, e3, . . . (where each is repeated
twice) is a frame withA = B = 2.

A frame withA = B is called atight frame and a frame which ceases to
be a frame on removal of one vector from the sequence is called anexact
frame. The frame generated from an orthonormal basis by

1√
2
e1,

1√
2
e1, e2, e3, e4, . . .

is tight withA = B = 1 but is not exact.

To make a connection between frames and bases, we introduce the coefficient
operatorU :H → `2 associated with a framex1, x2, . . . in H given by

Ux = (〈x, xn〉)∞n=1 ∈ `2

What we know is that

A‖x‖2H ≤ ‖Ux‖22 = 〈Ux, Ux〉 = 〈U∗Ux, x〉H ≤ B‖x‖2H

and this implies thatU∗U : H → H is a positive bounded linear operator onH
(in the sense of positive definiteness that〈U∗Ux, x〉H ≥ 0 for all x ∈ H). Also
U∗U satisfies the inequalities2

A idH ≤ U∗U ≤ B idH

in the sense that the differencesU∗U − A idH andB idH − U∗U are positive
operators. Moreover we can compute

U∗Ux =
∞∑
n=1

〈x, xn〉xn

We callU∗U theframe operatorand denote it byS.

2idH denotes the identity operator:H → H
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The frame operatorS is invertible and ifx ∈ H we can show

x =
∞∑
n=1

〈S−1x, xn〉xn =
∞∑
n=1

〈x, xn〉S−1xn

With a frame we do not have to have linear independence in general, but we
can show an optimality property for thè2 norm of the coefficients in the above
canonical expansion ofx in terms ofxn (with coefficients〈S−1x, xn〉). If x =∑∞

n=1 αnxn for some scalarsαn, then

∞∑
n=1

|αn|2 =
∞∑
n=1

|〈S−1x, xn〉|2 +
∞∑
n=1

|〈S−1x, xn〉 − αn|2 ≥
∞∑
n=1

|〈S−1x, xn〉|2

If we have a tight frame (A = B) thenS = A idH and

x =
1

A

∞∑
n=1

〈x, xn〉xn

By scaling the frame, we can arrive at one whereA = 1. Everyx ∈ H has a
representation in terms of such a frame which has many of the properties of an
expansion in terms of an orthonormal basis, except uniqueness.

For non-tight frames, the necessity to computeS−1 to arrive at a concrete
representation forx ∈ H is an obstacle to the practical use of such frames.

Proposition 3.3.3 Supposeψ ∈ L1(R) has the property thatF(ψ)(ξ) has no
zeros for1 < |ξ| < k for somek > 2. Then the set

{2n/2ψ(2nt− 2nm) : n,m ∈ Z}

is a frame inL2(R).
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4 Wavelets via Multiresolution Analysis

In this section we take a more restrictive approach to wavelets, which leads to a
more effective approach in practice than the frame-based approach.

4.1 Multiresolution analysis onR

Looking at the Haar wavelet example, we have the discrete version where every
f ∈ L2(R) can be expressed

f =
∑
n,m∈Z

〈f, ψ2n,2nm〉ψ2n,2nm

ψ2n,2nm(t) = 2n/2
(
χ[2−nm,2−n(m+1/2) − χ[2−n(m+1/2),2−n(m+1)

)
For a fixedn we see functions constant on intervals of length2−n−1 (and all the
functions have integral 0). Recall that we can haven positive and negative so that
we get short as well as long intervals.

If we take

Wn = span{ψ2−n,2−nm : m ∈ Z} Vn = span{ψ2−k,2−km : k,m ∈ Z, k < n}

(we take the closed linear spans), then we can deduce from orthonormality and
the fact the theψ2n,2nm form a basis that

{0} =
⋂
n∈Z

Vn ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

⊂
⋃
n∈Z

Vn dense inL2(R) (2)

f(t) ∈ Vn ⇐⇒ f(2t) ∈ Vn+1 (3)

Vn = Vn−1 ⊕Wn

(orthogonal direct sum) (4)

Vn = span

{
functions constant on intervals
of length2−n starting at0

}

Wn = span


functions constant on intervals
of length2−n−1 starting at0
and which average0 on the intervals
of length2−n


See Figure1 for a graphical view of this. In Figure2, we try to show what

happens when we build up linear combinations ofψ2n,2nm starting withn = 1
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A selection of graphs ofψ1,m, A selection of graphs ofψ1/2,b,
m = −2, 0, 2 b = −1, 0, 1, 2

Figure 1: Haar wavelets at different scales

Figure 2: Combining Haar wavelets at finer scales

(constant on intervals of length1) and then adding some more terms (with smaller
coefficients) withn = 0,−1,−2. The additional terms affect the details of the
graph. In fact, we show successive approximations to2(x−1)χ[0,1)(x), first using
ψ2,0, then adding a combination ofψ1,m, next adding a combination ofψ1/2,(1/2)m,
etc.

We take the point of view thatVn is what one can see if one is restricted to
taking averages over (dyadic) blocks of length1/2n (blocks[k/2n, (k + 1)/2n)).

A sequenceVn of subspaces onL2(R) with the properties (2) and (3) is called
amultiresolution analysisof L2(R).

In the example at hand, we have one additional key property, that all theVn
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are spanned by the integer translates of one function. For example

V0 is spanned by the translatesφ(x−m) (m ∈ Z) (5)

of the functionφ(t) = χ[0,1)(t). In fact these form an orthonormal basis forV0

(which is even more convenient). Then property (3) implies thatφ2−n,2−nm(t) =
2n/2φ(2nt − m) (m ∈ Z) form an orthonormal spanning sequence forVn (all
n ∈ Z).

Moreover, the orthogonal complementWn−1 of Vn−1 insideVn is also spanned
by the translates of one function,{ψ2−n+1,2−n+1m : m ∈ Z}.

It turns out that, in general, we can deduce thatWn is spanned by the translates
of one function based on the fact that (2), (3), (4) and (5) hold. We have

φ(t) ∈ V1 = span{φ1/2,m/2(t) =
√

2φ(2t−m) : m ∈ Z}

and since the
√

2φ(2t−m) are orthonormal, this means we must be able to express

φ =
∑
m∈Z

〈φ, φ1/2,m/2〉φ1/2,m/2 =
∑
m∈Z

cmφ1/2,m/2.

Indeed, in the particular Haar case we were considering, we have

φ(t) = φ(2t) + φ(2t− 1) =
1√
2
φ1/2,0(t) +

1√
2
φ1/2,1/2(t)

and notice that we also have

ψ(t) =
1√
2
φ1/2,0(t)−

1√
2
φ1/2,1/2(t)

It turns out in general that something similar happens.

Theorem 4.1.1 Suppose(Vn)n∈Z is a sequence of subspaces ofL2(R) which form
a multiresolution analysis (that is, they satisfy (2) and (3))) and suppose that (5)
holds for a functionφ with orthonormal translatesφ(t−m) (m ∈ Z).

(i) Then we must have∑
m∈Z

|cm|2 = 1 for cm = 〈φ, φ1/2,m/2〉

and ∑
m∈Z

cmcm−2` = 0 for 0 6= ` ∈ Z (6)
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(ii) If we define
ψ =

∑
m∈Z

(−1)mc1−mφ1/2,m/2

thenψ ∈ V1 and it is orthogonal toV0.

Moreover the translatesψ1,m (m ∈ Z) form an orthonormal basis for the
orthogonal complement ofV0 in V1 and the whole collection of translated
and scaled functions

{ψ2n,2nm : n,m ∈ Z}
based onψ is an orthonormal basis forL2(R).

(iii) If we assume thatφ ∈ L1(R) ∩ L2(R),
∫

R
φ(t) dt 6= 0 and{m : cm 6= 0} is

finite, then we have∑
m∈Z

cm =
√

2 (7)

F(φ)(ξ) = P (ξ/2)F(φ)(ξ/2) (8)

whereP (ξ) =
∑
m∈Z

cme
2πimξ

F(φ)(ξ) = F(φ)(0)
∞∏
k=1

P (ξ/2k) (9)

Proof.

(i) The first part follows from orthonormality ofφ(t − m) and the second by
expanding〈φ(t), φ(t− `)〉 = 0 in terms ofφ =

∑
m∈Z

cmφ1/2,m/2.

(ii) We can express

ψ(t− `) =
∑
m∈Z

(−1)mc1−(m+2`)φ1/2,m/2(t)

and so expand

〈φ(t), ψ(t− `)〉 =
∑
m∈Z

(−1)mcmc1−(m+2`) = 0

(since them and1−m− 2` terms have opposite signs).

The orthonormality of theψ1,m follows by (i).

To show that they span the orthogonal complement ofV0 in V1, supposef ∈
V1 is perpendicular toV0 and to allψ1,m. We can writef =

∑
m∈Z

fmφ1/2,m/2 =∑
m∈Z
〈f, φ1/2,m/2〉φ1/2,m/2 and let us denote the sequence of coefficients of
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f by F = (fm)m∈Z. Suppose we also denote byΦ` = (cm−2`)m∈Z the
coefficients ofφ(t − `) = φ1,` and byΨk =

(
(−1)mc1−(m+2k)

)
m∈Z

the
coefficients ofψ(t− k) = ψ1,k(t) in the same basis forV0.

Consider the matrixM that has as its columns

(. . . ,Φ1,Ψ1,Φ0,Ψ0,Φ−1,Ψ−1,Φ−2, . . .).

These columns are orthonormal by the earlier parts of the proof. The matrix
M represents a linear operator on`2 (where we takeZ as the index set for
the sequence space) that transforms the standard basis to the orthonormal
sequence given by the columns. When we computeM∗M we get the iden-
tity matrix. ButM∗F = 0 by assumption and so what we want isMM∗ to
be the identity.

If we breakM into 2× 2 blocksMrs (r, s ∈ Z) we get

Mrs =

(
c2r+2s c2s−2r+1

c2r+2s+1 −c2s−2r

)
and if we work outMM∗ we get the matrix made up of the blocks∑

j

Mr,j(Ms,j)
∗

=
∑
j

(
c2r+2j c2j−2r+1

c2r+2j+1 −c2j−2r

)(
c2s+2j c2s+2j+1

c2j−2s+1 −c2j−2s

)

=


∑

j(c2r+2jc2s+2j + c2j−2r+1c2j−2s+1)∑
j(c2r+2jc2s+2j+1 − c2j−2r+1c2j−2s)∑

j(c2r+2j+1c2s+2j − c2j−2rc2j−2s+1)∑
j(c2r+2j+1c2s+2j+1 + c2j−2rc2j−2s)


=

(
δrs 0
0 δrs

)
(The off-diagonal sums rearrange to0 and the orthogonality relations (6)
show that the diagonal entries are 0 unlessr = s, when they are1 by (i).)
HenceMM∗ is the identity,F = MM∗F = 0 and sof = 0. Thus the
collection{φ1,m : m ∈ Z} ∪ {ψ1,m : m ∈ Z} is a maximal orthonormal
subset (an orthonormal basis) ofV0.

Sinceψ1,` is orthogonal toφ, it follows that〈ψ1,`, φ1,m〉 = 〈ψ1,`−m, φ〉 = 0
for all m. Asφ2,0 =

∑
m∈Z

cmφ1,m it follows that〈ψ1,`, φ2,0〉 = 0.

Iterating these ideas, we can show thatψ2n,2nm are all orthonormal. Since⋂
n∈Z

Vn = {0} we can show that anyf ∈ Vk which is orthogonal to all
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ψ2n,2nm (n > −k) must be zero and{ψ2n,2nm : n > −k} is an orthonormal
basis forVn. Using density of

⋃
n∈Z

Vn in L2(R) we can show thatψ2n,2nm

form an orthonormal basis ofL2(R).

(iii) Integrating both sides ofφ =
∑

m∈Z
cmφ1/2,m/2 gives (7). Taking Fourier

transforms of both sides gives (8). Iterating (8) gives

F(φ)(ξ) = F(φ)(ξ/2n)
n∏
k=1

P (ξ/2k)

and lettingn→∞ gives (9).

4.2 Daubechies wavelets

By Theorem4.1.1, we can find wavelets if we can find finitely nonzero sequences
of coefficientscm that satisfy the conditions of part (i) of that theorem and (7).
There is another step required, to show that the infinite product in (9) converges to
the Fourier transform of a function inL1(R) ∩ L2(R) with nonzero integral. This
step usually works because of results which we will not explain and the resulting
φ (andψ) will be compactly supported in most cases.

The functionψ is the basic wavelet (sometimes called the ‘mother wavelet’)
resulting from the multiresolution analysis and theφ is a generating function that
is sometimes called the ‘father function’, but also known as thescaling function.

Examples 4.2.1 (i) If we allow only two non-zero coefficientsc0 andc1, then
the conditions we have force us to have the Haar wavelet situation.

Allowing a possible nonzeroc2 as well asc0 andc1 still reduces to the Haar
wavelet situation.

(ii) Daubechies showed that there are a family of choices of coefficientsc0, c1, . . . , c2p−1

(p ≥ 1) that lead to continuous compactly-supportedφ (and continuous
compactly-supported wavelets). Asp increases the corresponding wavelet
becomes more differentiable.

Forp = 2 she exhibited

c0 =
1 +
√

3

4
√

2
, c1 =

3 +
√

3

4
√

2
, c2 =

3−
√

3

4
√

2
, c3 =

1−
√

3

4
√

2
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4.3 Higher dimensions

Generalisations toRd often require the use of2d−1 wavelets and not just one. So
3 wavelets forR2, for example.

The simplest approach is to take a waveletψ arising from a multiresolution of
L2(R) and its associated scaling functionφ. Then we consider the wavelet basis
of L2(R2) given by

{ψws2n,2nm : n ∈ Z,m ∈ Z
2} ∪ {ψsw2n,2nm} ∪ {ψww2n,2nm}

where

ψws(x, y) = ψ(x)φ(y), ψsw(x, y) = φ(x)ψ(y), ψww(x, y) = ψ(x)ψ(y)

are ‘tensor products’ of the waveletψ in one variable with the scaling functionφ
or with ψ in the other variable.

This corresponds to a multiresolution analysis ofL2(R2) which respects the
dilationsx 7→ 2x and the translationsx 7→ x+ b with b ∈ Z

2.
One can replace the dilationx 7→ 2x by x 7→ Ax whereA is a matrix with

integer entries which is expansive (‖Anx‖ → ∞ asn→∞ for each0 6= x ∈ R
2).

The number of wavelets required is then| det(A)| − 1 and this can be 1, for
example if

A =

(
1 −1
1 1

)
Although only 1 wavelet may be needed, there are someA where there is no
scaling function to generate a multiresolution analysis and there do not seem to be
effective algorithms with such approaches.

5 Applications and Concluding Remarks

There have been a vast range of practical applications of wavelets.
There are effective algorithms for dealing with orthonormal wavelets that arise

from a multiresolution analysis. All the calculations are done in terms of the
coefficientscm.

Practical applications normally rely on a finite-dimensional version of the
wavelet basis, similar to the way the Discrete Fourier Transform (DFT) works.
There is a Fast Wavelet Transform algorithm to rival (or even surpass) the Fast
Fourier Transform (FFT) algorithm for computing the DFT.

Wavelets are applied in removing high-frequency noise from signals and in
trying to identify strong features of signals. Strong features (such as steep slopes
or discontinuities) will normally result in significant magnitudes for the wavelet
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coefficients at that point for many different scales. Similarly high frequency noise
will normally only produce significant wavelet coefficients at one scale at each
position.

The most spectacular uses are in image analysis and the big success story of
wavelets with respect to images was its adoption by the FBI as a standard for
compressing digital fingerprint images. An image (in one colour or grayscale)
may be regarded as a function of a position in the planar image, with the value
of the function being the brightness or intensity of the image at that point. Using
2-dimensional wavelets, one can express the function by its wavelet coefficients.

To compress the image, one discards some of the smaller coefficients and
stores or transmits only the ‘important’ ones. If this is done in a clever way and
if one uses a cleverly selected set of wavelet coefficients (cm), then high compres-
sion rates can be obtained without much loss of quality.

Apart from the fingerprints, there is a new JPEG2000 standard that is intended
to supplant the JPEG version now used for storing many images on computers.
(JPEG is based on an algorithm that uses the Discrete Cosine Transform, a variant
of the DFT).

On a more mathematical front there are orthonormal wavelet bases that form
unconditional bases for Banach spaces of functions such asLp(R) andLp[0, 1]
(1 < p <∞). See [6]. For the Fourier series case, we get only a conditional basis
for Lp[0, 1] (1 < p <∞, p 6= 2).

Wavelets have certain apparent disadvantages compared to Fourier series and
transforms. The wavelets are not eigenfunctions for differentiation and they do
not behave especially well with respect to convolutions. However, some results
remain valid that seem to suggest that differentiation is ‘almost diagonal’ when
expressed in a wavelet basis. See the characterisations of Sobolev spaces in terms
of coefficients with respect to a wavelet basis ([6]).

The number of potential applications of wavelets in signal processing, image
analysis and compression, sound wave analysis, numerical solution of differen-
tial equations and noise reduction is very large and there is a vast literature on
wavelets. Not all potential applications seem to have succeeded, possibly because
the right approach or the right wavelet has not been found. Another explanation
is that wavelet-like techniques were already standard techniques in some fields
like recognition of shapes in digital images, even before the term ‘wavelet’ was
identified around 1988.

Current research on applications of wavelets is very active and, on the theoret-
ical front, there are various more complex variants of wavelets being investigated.
Also then-dimensional versions of wavelets (associated with matrix dilations)
seem to pose some unresolved problems.
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