
Chapter 10
An Introduction to Wavelet Analysis

[This chapter is based on the lectures of Professor D.V. Pai, Department of Mathematics, Indian
Institute of Technology Bombay, Powai, Mumbai - 400 076, India.]

10.0 Introduction

During the last 20 years or so, the subject of “Wavelet analysis” has attracted
a lot of attention from both mathematicians and engineers alike. Vaguely speaking
the term “Wavelet” means a little wave, and it includes functions that are reasonably
localized in the time domain as well as in the frequency domain. The idea seems to
evolve from the limitation imposed by the uncertainty principle of Physics which
puts a limit on simultaneous localization in both the time and the frequency domains.

From a historical perspective, although the idea of wavelet seems to originate
with the work by Gabor and by Neumann in the late 1940s, this term seems to
have been coined for the first time in the more recent seminal paper of Grossman
and Morlet (1984). Nonethless, the techniques based on the use of translations and
dilations are much older. This can be at least traced back to Calderón (1964) in his
study of singular integral operators. Starting with the pioneering works reported in
the early monographs contributed by Meyer (1992), Mallat (1989), Chui (1992),
Daubechies (1992) and others, an ever increasing number of books, monographs
and proceedings of international conferences which have appeared more recently in
this field only point to its growing importance.

The main aim of these lectures is to attempt to present a quick introduction of
this field to a beginner. We will mainly emphasize here the construction of ortho-
normal (o.n.) wavelets using the so-called two-scale relation . This will lead us to a
natural classification of wavelets as well as to the classical multiresolution analysis.
In particular, we will also attempt to highlight the spline wavelets of Chui and Wang
(1993).
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390 10 An Introduction to Wavelet Analysis

10.1 Fourier Analysis to Wavelet Analysis

Let L2(0,2π) = the space of all (equivalence classes) of 2π-periodic, Lebesgue
measurable functions f : R → IC such that

∫ 2π
0 | f (t)|2dt < ∞. L2(0,2π) is a Hilbert

space furnished with the inner product

( f ,g) =
1

2π

∫ 2π

0
f (t)g(t)dt, f ,g ∈ L2(0,2π)

and the corresponding norm

‖ f‖2 =
{

1
2π

∫ 2π

0
| f (t)|2dt

}1/2

.

Any f in L2(0,2π) has a Fourier series representation

f (t) =
∞

∑
k=−∞

ckeikt , (10.1.1)

where the constants ck, called the Fourier coefficients of f , are defined by

ck = ( f ,wk) =
1

2π

∫ 2π

0
f (t)ēiktdt, wk(t) = eikt . (10.1.2)

This is a consequence of the important fact that {wk(t) : k ∈ ZZ} is an orthonormal
basis of L2(0,2π). Also recall that the Fourier series representation satisfies the so-
called Parseval identity:

‖ f‖2
2 =

∞

∑
k=−∞

|ck|2, f ∈ L2(0,2π).

Let us emphasize two interesting features in the Fourier series representation
(10.1.1). Firstly, note that f is decomposed into an infinite sum of mutually orthog-
onal components ckwk. The second interesting feature to be noted of (10.1.1) is that
the o.n. basis {wk : k ∈ ZZ} is generated by “dilates” of a single function

w(t) := w1(t) = eit ;

that is, wk(t) = w(kt), k ∈ ZZ, is , in fact, an integral dilate of w(t). Let us reempha-
size the following remarkable fact:

Every 2π-periodic square-integrable function is generated by a superposition of
integral dilates of the single basic function w(t) = eit .

The basic function w(t) = cos t + isin t is a sinusoidal wave. For any integer k
with |k| large, the wave wk(t) = w(kt) has high frequency, and for k in ZZ with |k|
small, the wave wk has low frequency. Thus every function in L2(0,2π) is composed
of waves with various frequencies.

Let L2(R) := the space of all (equivalence classes) of complex measurable func-
tions, defined on R for which
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∫

R

| f (t)|2dt < ∞.

Note that the space L2(R) is a Hilbert space with the inner product

〈 f , g〉 =
∫

R

f (t)g(t)dt f ,g ∈ L2(R)

and the norm

‖ f‖2 =
{∫

R

| f (t)|2dt
}1/2

f ∈ L2(R).

Wavelet analysis also begins with a quest for a single function ψ in L2(R) to
generate L2(R). Since any such function must decay to zero at ±∞, we must give
up, as being too restrictive, the idea of using only linear combinations of dilates of ψ
to recover L2(R). Instead, it is natural to consider both the dilates and the translates.
The most convenient family of functions for this purpose is thus given by

ψ j,k(t) = 2 j/2ψ(2 jt − k), j,k ∈ ZZ. (10.1.3)

This involves a binary dilation (dilation by 2 j) and a dyadic translation (of k/2 j).

Lemma 10.1.1: Let φ ,ψ be in L2(R). Then, for i, j,k, � in ZZ, we have:

(i) 〈ψ j,k, φ j,�〉 = 〈ψi,k, φi,�〉;
(ii) ‖ψ j,k‖2 = ‖ψ‖2.

Proof 10.1.1:
(i) We have

〈ψ j,k, φ j,�〉 =
∫

R

2 j/2ψ(2 jt − k)2 j/2φ(2 jt − �)dt.

Put t = 2i− jx to get

R.H.S. =
∫

R

2i/2ψ(2ix− k)2i/2φ(2ix− �)dx

= 〈ψi,k, φi,�〉.

Note that

‖ψ j,k‖2
2 = 2 j

∫

R

|ψ(2 jt − k)|2dt

=
∫

R

|ψ(x)|2dx = ‖ψ‖2
2. (We put x = 2 jt − k.)

Remark 10.1.1: For i, j ∈ ZZ, we have:
the set {ψi,k : k ∈ ZZ} is orthonormal
⇔ the set {ψ j,k : k ∈ ZZ} is orthonormal.
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Definition 10.1.1. A function ψ ∈ L2(R) is called an orthonormal wavelet (or an
o.n. wavelet) if the family {ψ j,k}, as defined in (10.1.3), is an orthonormal basis of
L2(R); that is,

〈ψ j,k, ψi,�〉 = δ j,iδk,�, j,k, i, � ∈ ZZ (10.1.4)

and every f in L2(R) has a representation

f (t) =
∞

∑
j,k=−∞

c j,kψ j,k(t), (10.1.5)

where the convergence of the series in (10.1.5) is in L2(R):

lim
M1 ,N1,M2 ,N2→∞

∥
∥
∥
∥
∥

f −
N1

∑
j=−M1

N2

∑
k=−M2

c j,kψ j,k

∥
∥
∥
∥
∥

2

= 0.

The series representation (10.1.5) of f is called a wavelet series and the coefficients
c j,k given by

c j,k = 〈 f , ψ j,k〉 (10.1.6)

are called the wavelet coefficients.

Example 10.1.1. Let us recall the definition of the Haar function ψH(t) given
below:

ψH(t) :=

⎧
⎪⎨

⎪⎩

1, if 0 ≤ t < 1
2

−1, if 1
2 ≤ t < 1

0, otherwise.

At this stage, the reader is urged as an exercise to verify that the family {ψH
j,k :

j,k ∈ ZZ} is orthonormal in the space L2(R). We will come back again to this exam-
ple in the next section. It will be shown there that ψH is, in fact, an o.n. wavelet.

Next, let us recall that the Fourier transform of a function f in L1(R) is the
function f̂ defined by

f̂ (w) :=
∫

R

f (t)eiwtdt, w ∈ R.

Definition 10.1.2. If a function ψ ∈ L2(R) satisfies the admissibility condition:

Cψ :=
∫

R

|ψ̂(w)|2
|w| dw < ∞

then ψ is called a “basic wavelet”.

The definition is due to Grossman and Morlet (1984). It is related to the invert-
ibility of the continuous wavelet transform as given by the next definition.
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Definition 10.1.3. Relative to every basic wavelet ψ , consider the family of
wavelets defined by

ψa,b(t) := |a|−1/2ψ
(

t −b
a

)
,a,b ∈ R, a 
= 0. (10.1.7)

The continuous wavelet transform (CWT) corresponding to ψ is defined by

(Wψ f )(a,b) = |a|−1/2
∫

R

f (t)ψ
(

t −b
a

)
dt, f ∈ L2(R) (10.1.8)

= 〈 f , ψa,b〉.

Let us note that the wavelet coefficients in (10.1.7) and (10.1.8) become

c j,k = (Wψ f )
(

1
2 j ,

k
2 j

)
. (10.1.9)

Thus wavelet series and the continuous wavelet transform are intimately related.

Let us also state the following inversion theorem for the continuous wavelet trans-
form. The proof uses the Fourier transform of ψa,b, the Parseval identity and the fact
that the Gaussian functions

gα(t) :=
1

2
√
πα

e−
t2
4α , α > 0

is an approximate identity in L1(R). Thus, for f ∈ L1(R), limα→0( f ·gα)(t) = f (t)
at every point t where f is continuous. The details of the proof are left to the reader
as an exercise.

Theorem 10.1.1. Let ψ in L2(R) be a basic wavelet which defines a continuous
wavelet transform Wψ . Then for any f in L2(R) and t ∈ R at which f is continuous,

f (t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
(Wψ f )(a,b)ψa,b(t)

dadb
a2 , (10.1.10)

where ψa,b is defined by (10.1.7).

10.2 Construction of Orthonormal Wavelets

One of the first examples of an o.n. wavelet is due to Haar (1910). Let us recall
(Example 10.1.1) that it is called the Haar function defined by

ψH(t) :=

⎧
⎪⎨

⎪⎩

1, if 0 ≤ t < 1
2

−1, if 1
2 ≤ t < 1

0, otherwise.
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Most of the recent theories on wavelets are no doubt inspired by this example. How-
ever, as it turns out, its discontinuous nature is a serious drawback in many applica-
tions. Thus, in these lectures, one of our quests is to explore more examples. Let us
begin with a real function φ in L2(R). As a first step let us assume that

(So) : the family {φo,k(t) = φ(t − k) : k ∈ ZZ} is orthonormal.

Then it follows from Lemma 10.1.1, that the family {φ j,k(t) : k ∈ ZZ} is orthonormal,
for each j ∈ ZZ. Let us define

Vj = span{φ j,k : k ∈ ZZ}, ( j ∈ ZZ),

the closure being taken in the topology of L2(R). It results from the next lemma that

Vj =

{

∑
k∈ZZ

ckφ j,k : c = {ck} ∈ �2(ZZ)

}

. (10.2.1)

Lemma 10.2.1: Let {uk : k ∈ ZZ} be an orthonormal bi-infinite sequence in a
Hilbert space X . Then

span{uk : k ∈ ZZ} =

{
∞

∑
k=−∞

ckuk : c = {ck} ∈ �2(ZZ)

}

.

Proof 10.2.1: Let V denote the L.H.S. set and U be the R.H.S. set. Note that for a
sequence {ck} ∈ �2(ZZ), the series ∑k ckuk converges, because its partial sums form
a Cauchy sequence in X :

∥
∥
∥
∥
∥

M

∑
k=−M

ckuk −
N

∑
k=−N

ckuk

∥
∥
∥
∥
∥

2

=
M

∑
k=N+1

|ck|2 +
−(N+1)

∑
k=−M

|ck|2 → 0 as M,N → ∞.

Clearly, U ⊂ V . Also, U is a closed subspace being isometrically isomorphic to
�2(ZZ). Since uk ∈U , we have span{uk}⊂U ⇒span{uk} ⊂U = U . Hence V ⊂U

Let us assume, in addition, that φ ∈ V1. Then for a suitable c ∈ �2(ZZ), we will
have

(S1) φ(t) = ∑k∈ZZ ckφ(2t − k).

This is called a two-scale relation or a dilation equation.

Lemma 10.2.2: Let φ in L2(R) satisfy (S0) and (S1). Then for all i, j in ZZ,

∑
k

[
c j−2kci−2k +(−1)i+ jc1− j+2kc1−i+2k

]
= 2δ j,i. (10.2.2)

Here the coefficients c j’s are as defined in (S1).
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Proof 10.2.2:

Case 1: i+ j is odd.

Then L.H.S. of (10.2.2) becomes

∑
k

c j−2kci−2k −∑
k

c1− j+2kc1−i+2k.

Put k = −r in the first sum and k = r + i+ j−1
2 in the second sum to obtain

∑
r

c j+2rci+2r −∑
r

ci+2rc j+2r = 0.

Case 2: i+ j is even.

Then L.H.S. of (10.2.2) becomes ∑kc j−2kci−2k +∑kc1− j+2kc1−i+2k. Put k = −r
in the first sum and k = r + i+ j

2 in the second sum to obtain

∑
r

c j+2rci+2r +∑
r

ci+2r+1c j+2r+1 =∑
k

c j+kci+k =∑
�

c�c�+i− j.

(We put j + k = �.)

Since the set {φ1,k : k ∈ ZZ} is orthonormal,

∑
�

c�c�+i− j = 〈∑
�

c�φ1,�,∑
�

c�+i− jφ1�〉.

Using (S1), we have

∑
�

c�φ1�(t) =∑
�

c�21/2φ(2t − �) = 21/2φ(t).

Likewise,

∑
�

c�+i− jφ1�(t) =∑
�

c�+i− j21/2φ(2t − �)(put �+ i− j = m)

=∑
m

cm21/2φ(2t + i− j−m)

= 21/2∑
m

cmφ(2(t − j− i
2

)−m)

= 21/2φ(t − j− i
2

) = 21/2φ0, j−i
2

.

Thus,

∑
�

c�c�+i− j = 〈21/2φ0,0, 21/2φ0, j−i
2
〉

= 2δ j,i, using (S0).
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Lemma 10.2.3: Let φ in L2(R) satisfy (S0) and (S1). Let ψ in L2(R) be def-
ined by

(W ) ψ(t) =
∞

∑
k=−∞

(−1)klc1−kφ(2t − k).

Then for k ∈ ZZ,

φ1,k = 2−1/2∑
m

[
ck−2mφ0,m +(−1)kc1−k+2mψ0,m

]
. (10.2.3)

Here the coefficients c j’s are as defined in the two-scale relation (S1).

Proof 10.2.3: By (S1), φ(t) = ∑i ciφ(2t − i)

⇒ φ(t −m) = ∑i ciφ(2(t −m)− i) = ∑i 2−1/2ci21/2φ(2t −2m− i)

⇒ φ0,m =∑
i

2−1/2ciφ1,2m+i.

Likewise,
ψ0,m =∑

i
(−1)i2−1/2c1−iφ1,2m+i.

The (R.H.S.) of (10.2.3) can now be written as

2−1/2∑
m

[

Ck−2m∑
i

2−1/2ciφ1,2m+i +(−1)kc1−k+2m∑
i

2−1/2(−1)ic1−iφ1,2m+i

]

.

Changing the index i to r by the equation r = 2m+ i, one obtains:

2−1∑
r
∑
m

[
ck−2mcr−2m +(−1)k+rc1−k+2mc1−r+2m

]
φ1,r = 2−1∑

r
2δk,rφ1,r.

The last expression equals φ1,k.

Lemma 10.2.4: Let U and V be closed subspaces of a Hilbert space X such that
U ⊥V . Then U +V is closed.

Proof 10.2.4: Let wn = un + vn,un ∈U,vn ∈V , be such that wn → w. Since

‖wn −wm‖2 = ‖un −um‖2 +‖vn − vm‖2

and {wn} is Cauchy, both the sequences {un},{un} are Cauchy. If u = limun,v =
limvn, then

w = u+ v ∈U +V.

Theorem 10.2.1. Let φ in L2(R) satisfy properties (S0) and (S1). Let ψ in L2(R)
be defined by (W ). Then the family {ψ j,k : j,k ∈ ZZ} is orthonormal. Moreover,
V1 = V0

⊕⊥W0, where
W0 = span{ψ0,k : k ∈ ZZ}
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Let us recall the property (W ):

ψ(t) =
∞

∑
k=−∞

(−1)kc1−kφ(2t − k).

Proof 10.2.5: Assertion 1: For all n,m in ZZ, φ0,n ⊥ ψ0,m. Indeed,

〈φ0,n, ψ0,m〉 =
∫

R

φ(t −n)ψ(t −m)dt

=
∫

R

[

∑
k

ckφ(2t −2n− k)∑
�

(−1)�c1−�φ(2t −2m− �)

]

dt

=∑
k
∑
�

(= −1)�ckc1−�

∫

R

φ(x−2n− k)φ(x−2m− �)
1
2

dx

(Put 2t = x)

=
1
2∑k ∑�

(−1)�ckc1−�δ2n+k,2m+�

=
1
2∑k

(−1)kckcp−k

(2n+ k = 2m+ � ⇒ � = 2n−2m+ k. Put p = 2m−2n+1.)

=
1
4

[

∑
k

(−1)kckcp−k +∑
i
(−1)icicp−i

]

(Put p− i = q.)

=
1
4

[

∑
k

(−1)kckcp−k +∑
q

(−1)p−qcqcp−q

]

=
1
4

[

∑
k

(−1)kckcp−k −∑
q

(−1)qcqcp−q

]

= 0.

We have just established that V0 ⊥W0.

Assertion 2: {ψ0,n : n ∈ ZZ} is orthonormal. We have

φ0,n(t) = φ(t −n) =∑
k

ckφ(2t −2n− k) = 2−1/2∑
k

ckφ1,k+2n,

ψ0,n(t) = ψ(t −n) =∑
�

(−1)�c1−�φ(2t −2n− �) = 2−1/2∑
�

(−1)�c1−�φ1,�+2n.

Hence

〈φ0,n, φ0,m〉 = 2−1〈∑
k

ckφ1,k+2n,∑
�

c�φ1,�+2m〉

= 2−1∑
k
∑
�

ckc�δk+2n,�+2m = 2−1∑
k

ckck+2n−2m.
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A similar calculation gives

〈ψ0,n, ψ0,m〉 = 2−1∑
k

(−1)k(−1)k+2n−2mc1−kc1−2n+2m−k

= 2−1∑
i

CiCi+2m−2n = δm,n.

Assertion 3:

V1 = V0

⊥⊕
W0.

From (S1) and (W ) we have φ ∈V1,ψ ∈V1. The same is true for their integer shifts.
Hence V0 +W0 ⊂V1. By Lemma 10.2.4, V0 +W0 is closed. Also, by Lemma 10.2.3,
φ1,k ∈V0 +W0. This implies V1 = span{φ1,k}⊂V0 +W0. Since V0 ⊥W0, we conclude
that V0

⊕⊥W0 = V1. To complete the proof, let Wj = span{ψ j,k : k ∈ ZZ}. On similar
lines as before, one obtains

Vj = Vj−1

⊥⊕
Wj−1, j ∈ ZZ.

Assertion 4: 〈ψ j,k, ψi,�〉 = δ j,iδk,�.
For j = i, this follows from Lemma 10.1.1. Assume j 
= i. Let j < i. Then ψ j,k ∈

Wj ⊂Vj+1 ⊂Vi and ψi,� ∈Wi. Hence ψ j,k ⊥ ψi,�.

Remark 10.2.1: Assume φ ∈ L2(R) satisfies properties (S0) and (S1). Then for
� ∈ ZZ,

φ0,�(t) = φ(t − �) =∑
k

ckφ(2t −2�− k)

= 2−1/2∑
k

ck21/2φ(2t −2�− k) = 2−1/2∑
k

ckφ1,2�+k.

φ j−1,k(t) = 2
j−1
2 φ(2 j−1t − k)

= 2
j−1
2 ∑

�

c�φ(2 jt −2k− �)

= 2−1/2∑
�

c�φ j,2k+�.

Thus
φ j−1,k(t) = 2−1/2∑

r
cr−2kφ j,r. (10.2.4)

On the same lines, one sees that

ψ j−1,k = 2−1/2∑
r

(−1)rc2k+1−rφ j,r. (10.2.5)

Theorem 10.2.2. Let φ in L2(R) satisfy properties (S0) and (S1). Let ψ in L2(R)
be defined by
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(W ) ψ(t) =
∞

∑
k=−∞

(−1)kc1−kφ(2t − k)

(with coefficients c j’s as in (S1)).
In addition, assume that

⋂

j∈ZZ

Vj = {0} and
⋃

j∈ZZ

Vj = L2(R).

Then {ψ j,k : j,k ∈ ZZ} is an o.n. wavelet for L2(R).

Proof 10.2.6: In view of the previous theorem, we need only prove that the or-
thonormal set {ψ j,k : j,k ∈ ZZ} is complete. To this end, we need only show that

f ∈ L2(R), f ⊥ ψ j,k, j,k ∈ ZZ ⇒ f = 0.

Assuming these hypotheses, we have f ⊥Wj, for every j ∈ ZZ. For each j ∈ ZZ, let
Pj : L2(R) → Vj denote the orthogonal projector onto Vj, and let v j := Pj f . Thus
v j ∈Vj and f − v j ⊥Vj. Since

Vj = Vj−1

⊥⊕
Wj−1,

we have
f − v j ⊥Vj−1and f − v j ⊥Wj−1 ⇒ v j ∈W⊥

j−1.

Since f ⊥Wj−1, we have v j ∈Vj−1. Also,

v j ∈Vj−1 and f − v j ⊥Vj−1 ⇒ v j = v j−1.

Thus {v j} is a constant sequence. But the density of
⋃

Vj and the nested property
Vj ⊂ Vj+1, for all j ∈ ZZ of Vj’s entail v j → f . Hence v j = f for all j ∈ ZZ, from
which one concludes that f ∈⋂ j Vj. Thus f = 0.

Example 10.2.1. Perhaps, one simplest pair of functions illustrating the previous
theorem is

ψ = ψH (the Haar wavelet), φ = χ[0,1).

It is easy to verify that φ obeys the simple two-scale relation

φ(t) = φ(2t)+φ(2t −1).

Thus here, c0 = c1 = 1 and ck = 0 for every k ∈ ZZ \{0,1}, and ψ is given by

ψ(t) = φ(2t)−φ(2t −1),

which is none other than the Haar wavelet.
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It remains to check in the above example, the two properties

⋂

j

Vj = {0} and
⋃

Vj = L2(R).

Here

φ0,k =
{

1, k ≤ t < k +1
0, otherwise.

Thus
V0 :=

{
f ∈ L2(R) : f constant on [k,k +1),∀k ∈ ZZ

}

and

Vj :=
{

f ∈ L2(R) : f constant on [
k
2 j ,

k +1
2 j ),∀k ∈ ZZ

}
.

Clearly,

f ∈V0 ⇒ f constant on [k,k +1),∀k ∈ ZZ

⇒ f constant on [
k
2
,

k +1
2

),∀k ∈ ZZ

⇒ f ∈V1.

Thus V0 ⊂V1. Likewise, Vj ⊂Vj+1,∀ j ∈ ZZ. Clearly, the space S of step functions
is dense in

⋃
j Vj. It is well known that S is also dense in L2(R). Hence

⋃
Vj = L2(R).

Moreover,

f ∈
⋂

j

Vj ⇒ f = constant on [0,
1
2 j ),∀ j ∈ ZZ.

Letting j →−∞, we get f = constant on [0,∞). Since f ∈ L2(R), this constant must
be zero. It follows by a similar argument that f is identically 0 on (−∞,0}. Thus,

⋂

j

Vj = {0}.

Remark 10.2.2: We note that here it is easy to check directly that φ satisfies
(S0): the set {φ0,k : k ∈ ZZ} is orthonormal.

10.3 Classification of Wavelets and Multiresolution Analysis

Let us recall that if X is a separable Hilbert space, then a (Schauder) basis {xn} of
X is said to be a Riesz basis of X if it is equivalent to an orthonormal basis {un} of
X , in the sense that, there exists a bounded invertible operator T : X → X such that
T (xn) = un,∀n ∈ N. From this definition, it is easy to prove the next proposition.
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Proposition 10.3.1 Let X be a separable Hilbert space. Then the following state-
ments are equivalent.

(a) {xn} is a Riesz basis for X .
(b) span{xn} = X and for every N ∈ N and arbitrary constants c1,c2, . . . ,cN , there

are constants A,B with 0 < A ≤ B < ∞ such that

A
N

∑
i=1

|ci|2 ≤
∥
∥
∥
∥
∥

N

∑
i=1

cixi

∥
∥
∥
∥
∥

2

≤ B
N

∑
i=1

|ci|2 .

Remark 10.3.1: Let {xn} be a Riesz basis in X . Then the series ∑∞i=1 cixi is con-
vergent in X if and only if c = {ci} ∈ �2. As a result, each x ∈ X has a unique
representation

x =
∞

∑
i=1

cixi, c = {ci} ∈ �2.

The preceding discussion enables one to define a Riesz basis of X as follows.

Definition 10.3.1. A sequence {xn} in a Hilbert space X is said to constitute a
Riesz basis of X if span{xn}n∈N = X and there exists constants A,B with 0 < A ≤
B < ∞ such that

A
∞

∑
i=1

∣
∣c j
∣
∣2 ≤
∥
∥
∥
∥
∥

∞

∑
j=1

c jx j

∥
∥
∥
∥
∥

2

≤ B
∞

∑
j=1

∣
∣c j
∣
∣2

for every sequence c = {c j} ∈ �2.

We are now ready for the following definition.

Definition 10.3.2. A function ψ in L2(R) is called an R-function if {ψ j,k : j,k ∈
ZZ} as defined in (10.1.3) is a Riesz basis of L2(R) in the sense that

span{ψ j,k : j,k ∈ ZZ} = L2(R),

and

A‖{c j,k}‖2
�2(ZZ) ≤ ‖ ∑

j,k∈ZZ
c j,kψ j,k‖2 ≤ B‖{c j,k}‖2

�2(ZZ)

holds for all doubly bi-infinite sequences {c j,k} ∈ �2(ZZ) and for suitable constants
A,B such that 0 < A ≤ B < ∞.

Next suppose that ψ is an R-function. By Hahn-Banach theorem, one can show
that there exists a unique Riesz basis {ψ j,k} of L2(R) which is dual to the Riesz
basis {ψ j,k} :

〈ψ j,k, ψ l,m〉 = δ j,lδk,m, j,k, l,m ∈ ZZ. (10.3.1)
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Consequently, every function f in L2(R) admits the following(unique) series repre-
sentation:

f (t) =
∞

∑
j,k=−∞

〈 f , ψ j,k〉ψ j,k. (10.3.2)

Note that, although the coefficients in this expansion are the values of CWT of f
relative to ψ , the series (10.3.2) is, in general, not a wavelet series. In order that this
be a wavelet series, there must exist some function ψ̃ in L2(R) such that

ψ j,k = ψ̃ j,k, j,k ∈ ZZ,

where ψ̃ j,k is as defined in (10.1.3) from the function ψ̃ .
Clearly, if {ψ j,k} is an o.n. basis of L2(R), then (10.3.1) holds with ψ j,k = ψ j,k,

or ψ̃ = ψ . In general, however, such a ψ̃ does not exit.
If ψ is chosen such that ψ̃ exists, then the pair (ψ, ψ̃) gives rise to the following

convenient (dual) representation:

f (t) =
∞

∑
j,k=−∞

〈 f , ψ j,k〉ψ̃ j,k

=
∞

∑
j,k=−∞

〈 f , ψ̃ j,k〉ψ j,k

for any element f of L2(R).

Definition 10.3.3. A function ψ in L2(R) is called an R-wavelet (or simply a
wavelet) if it is an R-function and there exists a function ψ̃ in L2(R), such that
{ψ j,k} and {ψ̃ j,k}, as defined in (10.1.3), are dual bases of L2(R). If ψ is an
R-wavelet, then ψ̃ is called a dual wavelet corresponding to ψ.

Remark 10.3.2: A dual wavelet ψ̃ is unique and is itself an R-wavelet. Moreover,
ψ is the dual wavelet of ψ̃ .

Remark 10.3.3: Every wavelet ψ , orthonormal or not, generates a “wavelet se-
ries” expansion of any f in L2(R):

f (t) =
∞

∑
j,k=−∞

c j,kψ j,k(t), (10.3.3)

where each c j,k is the CWT of f relative to the dual ψ̃ of ψ evaluated at (a,b) =
( 1

2 j ,
k
2 j ).

We are now ready to look at an important decomposition of the space L2(R). Let
ψ be any wavelet and consider the Riesz basis {ψ j,k} that it generates. For each
j ∈ ZZ, let

Wj = span{ψ j,k : k ∈ ZZ}.
(10.3.3) suggests that L2(R) can be decomposed as a direct sum of the spaces Wj’s:
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L2(R) =
⊕

j∈ZZ

Wj (10.3.4)

in the sense that every f in L2(R) has a unique decomposition

f (t) = . . .+g−1 +g0 +g1 + . . .

where g j ∈Wj,∀ j ∈ ZZ.
Moreover, if ψ is an o.n. wavelet, then in the above decomposition, the direct

sum is, in fact, an orthogonal direct sum:

L2(R) =
⊥⊕

j∈ZZ

Wj := . . .
⊥⊕

W−1

⊥⊕
W0

⊥⊕
W1 . . . . (10.3.5)

Note that here, for ∀ j, l ∈ ZZ, j 
= l,

Wj ∩Wl = {0}, Wj ⊥Wl .

Definition 10.3.4. A wavelet ψ in L2(R) is called a semi-orthogonal wavelet (or
s.o. wavelet) if the Riesz basis {ψ j,k} that it generates satisfies

〈ψ j,k, ψl,m〉 = 0, j 
= l j,k, l,m ∈ ZZ (10.3.6)

Clearly, a semi-orthogonal wavelet also gives rise to an orthogonal decomposi-
tion (10.3.5) of L2(R).

We now come to the important concept of multiresolution analysis first intro-
duced by Meyer(1986) and Mallat(1989). We saw that any wavelet ψ (semiorthog-
onal or not) generates a direct sum decomposition (10.3.4) of L2(R).

For each j ∈ ZZ, let us consider the closed subspaces

Vj = . . .
⊕

Wj−2
⊕

Wj−1

of L2(R). These subspaces satisfy the following properties:

(MR1) . . . ⊂V−1 ⊂V0 ⊂V1 ⊂ . . . ;
(MR2) ∪ j∈ZZVj = L2(R), the closure being taken in the topology of L2(R);
(MR3) ∩ j∈ZZVj = {0};
(MR4) Vj+1 = Vj

⊕
Wj, j ∈ ZZ; and

(MR5) f (t) ∈Vj ⇔ f (2t) ∈Vj+1, j ∈ ZZ.

If the initial subspace V0 is generated by a single function φ in L2(R) in the sense
that

V0 = span{φ0,k : k ∈ ZZ}, (10.3.7)

then using (MR5) all the subspaces Vj are also generated by the same φ :

Vj = span{φ j,k : k ∈ ZZ},where φ j,k(t) = 2
j
2 φ(2 jt − k). (10.3.8)
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Definition 10.3.5. A function φ in L2(R) is said to generate a multiresolution
analysis (MRA) if it generates a ladder of closed subspaces Vj that satisfy (MR1),
(MR2), (MR3) and (MR5) in the sense of (10.3.8), and such that the following
property holds.

(MR0) {φ0,k : k ∈ ZZ} forms a Riesz basis of V0.
This means, there must exist constants A,B, with 0 < A ≤ B < ∞ such that

A‖{ck}‖2
�2(ZZ) ≤

∥
∥
∥
∥
∥∑k∈ZZ

ckφ0,k

∥
∥
∥
∥
∥

2

2

≤ B‖{ck}‖2
�2(ZZ) (10.3.9)

for all bi-infinite sequences c = {ck} ∈ �2(ZZ).
In this case, φ is called a scaling function.
Using the Poisson’s lemma (cf., e.g., [2], Lemma 2,24) and the Parseval’s identity

for Fourier transforms one shows that for any φ in L2(R), the following hold:

(A) The set {φ(x− k) : k ∈ ZZ} is orthonormal.
⇔
The Fourier transform φ̂ of φ satisfies the identity

∞

∑
−∞

|φ̂(ω+2πk)|2 = 1, (10.3.10)

for almost all ω ∈ R.

(B) The family of functions {φ(x−k) : k ∈ ZZ} satisfies the Riesz condition (10.3.9)
with Riesz bounds A and B.
⇔
The Fourier transform φ̂ of φ satisfies

A ≤
∞

∑
−∞

|φ̂(ω+2πk)|2 ≤ B,a.e. (10.3.11)

Remark 10.3.4: The condition (MR5) implies

f (t) ∈V0 ⇔ f (2 jt) ∈Vj.

Remark 10.3.5: The spaces Vj possess the following shift invariance property:

f (t) ∈Vj ⇔ f (t +
k
2 j ) ∈Vj,∀k ∈ ZZ.

The above remark follows from:

φ j,�(t +
k
2 j ) = 2

j
2 φ(2 j

(
t +

k
2 j

)
− �)

= 2
j
2 φ(2 jt − (�− k)).

Next, we give a few examples of MRA of L2(R).
For j,k ∈ ZZ, let us denote by I j,k the interval [ k

2 j ,
k+1
2 j ).
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Example 10.3.1. For each j ∈ ZZ, let Vj denote the space of piecewise constants:

Vj = { f ∈ L2(R) : f |I j,k ≡ constant, ∀k ∈ ZZ}.

Here V0 is the closed linear span of the integer shifts of the characteristic func-
tion χ[0,1], which is the scaling function φ . Here, it is easily verified that the set
{φ0,k : k ∈ ZZ} is orthonormal, and we have already checked that {Vj : j ∈ ZZ} is a
multiresolution. In this case, the wavelet is the Haar wavelet, which is, in fact, an
o.n. wavelet.

Example 10.3.2. For each j ∈ ZZ, let Vj be the L2(R)-closure of the set S j:

S j = { f ∈ L2(R)∩C(R) : f |I j,k is linear,∀k ∈ ZZ}.

It is easy to check all the conditions of MRA except (MR0) similar to the previ-
ous example. Checking of (MR0) involves computation of Riesz bounds, which in
this case, are A = 1

3 ,B = 1. Here the scaling function φ can be taken to be the hat
function:

φ(t) =

⎧
⎨

⎩

t, if 0 ≤ t ≤ 1
2− t, if 1 ≤ t ≤ 2

0, otherwise.

Note that here

φo,k(t) = φ(t − k) =

⎧
⎨

⎩

t − k, k ≤ t ≤ k +1
k +2− t, k +1 ≤ t ≤ k +2

0, otherwise.

It is easy to see that the set {φ0,k : k ∈ ZZ} is not orthonormal. Here using the two-
scale relation and a variant of Theorem 10.2.2, we can show that the corresponding
wavelet ψ is given by

ψ(t) = φ(2t)− 1
2
φ(2t −1)− 1

2
φ(2t +1)

whose support is [− 1
2 , 3

2 ].

10.4 Spline Wavelets

For each positive integer m, we denote by Sm(2− jZZ) =: S j
m the space of cardinal

splines of order m and with the knot sequence 2− jZZ, for a fixed j ∈ ZZ :

Sm(2− jZZ) = { f ∈ Cm−2(R) : f |I j,k ∈ Pm,∀k ∈ ZZ}

(Here Pm denotes the class of polynomials of order m , i.e. of degree ≤ m−1.) For
each m ∈ IN, the mth order cardinal B-spline Nm is defined by

Nm = χ[0,1) ∗ . . .∗χ[0,1) ( m times convoluted).
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Put differently, Nm is defined recursively by:

Nm(t) =
∫ ∞

−∞
Nm−1(t − s)N1(s)ds

=
∫ 1

0
Nm−1(t − s)ds,with N1 := χ[0,1).

The scaling functions in the two examples in the previous section are respectively
the first order and the second order cardinal B-spline. It is well known that any
f ∈ S j

m can be written as
f (t) =∑

k
ckNm(t − k). (10.4.1)

Taking Nm as the scaling function, let us define

V m
0 = spanS0

m = Sm(ZZ) (10.4.2)

Hence, a function f is in V m
0 if and only if it has a B-spline series representation

(10.4.1) with the coefficient sequence c = {ck} ∈ �2(ZZ). The other spaces V m
j are

defined by
f (t) ∈V m

j ⇔ f (2t) ∈V m
j+1, j ∈ ZZ.

In other words,
V m

j = spanS j
m.

Clearly the subspaces {V m
j : j ∈ ZZ} satisfy (MR1). The verification of (MR2) is

immediate: The class of polynomials P is dense in L2(R) and P ⊂ V m
j ,∀ j ∈ ZZ.

This implies
⋃

j∈ZZ

V m
j = L2(R).

The verification of (MR3) is exactly as in Example 10.3.1 The verification of (MR0)
is carried out as in Example 10.3.2 with φ replaced by Nm. Here the smallest value
of B is 1, and the largest value of A can be expressed in terms of the roots of the
Euler-Frobenius polynomial

E2m−1(z) = (2m−1)!zm−1
m−1

∑
k=−m+1

N2m(m+ k)zk (10.4.3)

From the nested sequence of spline spaces V m
j , we have the orthogonal comple-

mentary subspaces W m
j , given by

W m
j+1 = V m

j

⊕
W m

j , j ∈ ZZ.

Just as the B-spline Nm is the minimally supported generator of {V m
j }, we are in-

terested in finding the minimally supported ψm ∈ W0 that generates the mutually
orthogonal subspaces Wj. Such compactly supported functions ψm are called the
B-wavelets of order m. It turns out that

support Nm = [0,m]; support ψm = [0,2m−1],∀m ∈ IN
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We mention without working out further details that

ψm(t) =
3m−2

∑
k=0

qkNm(2t − k), (10.4.4)

with

qk = q(m)
k =

(−1)k

2m−1

m

∑
l=0

(
m
l

)
N2m(k− l +1). (10.4.5)

For the relevant details, we refer the reader to Chui (1992, Chapter 6).

10.5 A Variant of Construction of Orthonormal Wavelets

Let us go back once again to Theorems 10.2.1 and 10.2.2. Suppose φ in L2(R) is
such that φ does not satisfy (S0), i.e., {φ0,k : k ∈ ZZ} is not orthonormal.

In this case, it seems natural to define Φ by requiring its Fourier transform to be
using (10.3.10) and the Plencherel’s thorem,

Φ̂(ω) =
φ̂(ω)

{∑k |φ̂(ω+2πk)|2}1/2
, ω ∈ R. (10.5.1)

Theorem 10.5.1. Let φ in L2(R) be such that it satisfies

(MR0): {φ0,k : k ∈ ZZ} is a Riesz basis of V0.

Define Φ ∈ L2(R) by (10.5.1). Then {Φ0,k : k ∈ ZZ} is an orthonormal basis for the
space V0.

Theorem 10.5.2. Let φ in L2(R) be such that {φ0,k : k ∈ ZZ} is a Riesz basis for V0
and suppose φ ∈V1. Then Φ as defined in (10.5.1) satisfies a two-scale relation

Φ(t) =
∞

∑
k=−∞

akΦ(2t − k), (a = {ak} ∈ �2(ZZ)).

LetΨ be defined by
Ψ(t) =∑

k
(−1)ka1−kΦ(2t − k). (10.5.2)

Then the set {Ψj,k : j,k ∈ ZZ} is orthonormal.
Furthermore, if Vj’s satisfy (MR2) and (MR3), thenΨ is an orthonormal wavelet.

The proofs of the above theorems follow from Theorems 10.2.1 and 10.2.2 by
applying (10.3.10) and (10.3.11). The details are left to the reader as exercises.
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Exercises 10.5

10.5.1. Let ψH be the Haar wavelet. Show that for integers n < m,
∫ m

n
ψH(t)dt = 0.

10.5.2. Let f ,g ∈ L2(R), and suppose that fo j ⊥ g0i,∀i, j ∈ ZZ. Show that fn j ⊥
gni,∀n, i, j ∈ ZZ.

10.5.3. Let ψ ∈ L2(R),n ∈ ZZ, i ∈ ZZ. Define φ = ψni. Show that

span{φkj : k, j ∈ ZZ} = span{ψkj : k, j ∈ ZZ}.

10.5.4. Let {un} be an orthonormal sequence in a Hilbert space. Let α,β be in �2

such that α ⊥ β . Define

w =∑
k
αkuk, v =∑

k
βkuk.

Show that w ⊥ v. Is the converse true?

10.5.5. Verify directly the orthonormality of the family of functions {ψH
j,k; j,

k ∈ ZZ}.

10.5.6. Give a proof of Theorem 10.5.1.

10.5.7. Give a proof of Theorem 10.5.2.
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