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Preface 

A knowledge of linear systems provides a firm foundation for the study of 
optimal control theory and many areas of system theory and signal processing. 
State-space techniques developed since the early sixties have been proved to be 
very effective. The main objective of this book is to present a brief and 
somewhat complete investigation on the theory of linear systems, with 
emphasis on these techniques, in both continuous-time and discrete-time 
settings, and to demonstrate an application to the study of elementary (linear 
and nonlinear) optimal control theory. 

An essential feature of the state-space approach is that both time-varying 
and time-invariant systems are treated systematically. When time-varying 
systems are considered, another important subject that depends very much on 
the state-space formulation is perhaps real-time filtering, prediction, and 
smoothing via the Kalman filter. This subject is treated in our monograph 
entitled “Kalman Filtering with Real-Time Applications” published in this 
Springer Series in Information Sciences (Volume 17). For time-invariant 
systems, the recent frequency domain approaches using the techniques of 
Adamjan, Arov, and Krein (also known as AAK), balanced realization, and 
H” theory via Nevanlinna-Pick interpolation seem very promising, and this 
will be studied in our forthcoming monograph entitled “Mathematical Ap- 
proach to Signal Processing and System Theory”. The present elementary 
treatise on linear system theory should provide enough engineering and mathe- 
matics background and motivation for study of these two subjects. 

Although the style of writing in this book is intended to be informal, the 
mathematical argument throughout is rigorous. In addition, this book is self- 
contained, elementary, and easily readable by anyone, student or professional, 
with a minimal knowledge of linear algebra and ordinary differential equa- 
tions. Most of the fundamental topics in linear systems and optimal control 
theory are treated carefully, first in continuous-time and then in discrete-time 
settings. Other related topics are briefly discussed in the chapter entitled 
“Notes and References”. Each of the six chapters on linear systems and the 
threc chapters on optimal control contains a variety of exercises for the 
purpose of illustrating certain related view-points, improving the understand- 
ing of the material, or filling in the details of some proofs in the text. For this 
reason, the reader is encouraged to work on these problems and refer to the 
“answers and hints” which are included at the end of the text if any difficulty 
should arise. 



VI Preface 

This book is designed to serve two purposes: it is written not only for self- 
study but also for use in a one-quarter or one-semester introductory course in 
linear systems and control theory for upper-division undergraduate or first- 
year graduate engineering and mathematics students. Some of the chapters 
may be covered in one week and others in at most two weeks. For a fifteen- 
week semester, the instructor may also wish to spend a couple of weeks on the 
topics discussed in the “Notes and References” section, using the cited articles 
as supplementary material. 

The authors are indebted to Susan Trussell for typing the manuscript and 
are very grateful to their families for their patience and understanding. 

College Station 
Texas, May 1988 

Charles K. Chui 
Guanrong Chen 
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1. State-Space Descriptions 

Although the history of linear system theory can be traced back to the last 
century, the so-called state-space approach was not available till the early 1960s. 
An important feature of this approach over the traditional frequency domain 
considerations is that both time-varying and time-invariant linear or nonlinear 
systems can be treated systematically. The purpose of this chapter is to introduce 
the state-space concept. 

1.1 Introduction 

A typical model that applied mathematicians and system engineers consider is a 
“machine” with an “input-output’’ relation placed at the two terminals (Fig. 1.1). 
This machine is also called a system which may represent certain biological, 
economical, or physical systems, or a mathematical description in terms of an 
algorithm, a system of integral or differential equations, etc. In many appli- 
cations, a system is described by the totality of input-output relations (u, t i )  where 
u and u are functions or, when discretized, sequences, and may be either scalar or 
vector-valued. I t  should be emphasized that the collection of all input-output 
ordered pairs is not necessarily single-valued. As a simple example, consider a 
system given by the difTerentia1 equation u‘‘ + r = u. In this situation, the totality 
of all input-output relations that determines the system is the set 

s = (u, v): u“ + 2, = u }  

and it is clear that the same input u gives rise to infinitely many outputs 1’. For 
example, (1,  sint + l), (1, cost + l), and even (1, a cost + b sint + 1) for arbitrary 
constants ( I  and h, all belong to S. To avoid such an unpleasant situation and to 
give a more descriptive representation of the system, the “state” of the system is 
considered. The state of a system explains its past, present, and future situations. 
This is d p e  by introducing a minimum number of variables which are called 
state variables that represent the present situation, using the past information, 
namely the initial state, and describe the future behavior of the system 
completely. The column vector of the state variables, in a given order, is called a 
state twctor. 
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V 
c 

[out put 1 
Fig. 1.1 

Let us return to the simple example of the system described by the differential 
equation v” + v = u with a specified initial state. Introducing the state vector 

where x 1  and x2 are state variables satisfying the initial state x , ( a ) = b  and 
x , ( a ) = c ,  we can give a “state-space’’ description of this system by using a system 
of two equations: 

i=[ 0 1  ]x+[;]u 
- 1 0 

r. 

0=[1 O]X , 

where f denotes the derivative of the state vector x. The definition of state-space 
will be better understood later in Sect. 1.4. Here, the first equation in ( 1 . 1 )  gives 
the input-state relation while the second equation describes the state-output 
relation. The so-called state-space equations (1.1) could be obtained by setting the 
state variables x1 and x2 to be v and v‘ respectively. However, without the 
knowledge of such substitutions, it may not be immediately clear that the input- 
output relation follows from the state-space equations (1.1). To demonstrate how 
this is done more generally, we rewrite (1.1) as 

f = A x + B u  

v = C x  

where A, B, C are 2 x 2, 2 x 1, 1 x 2 matrices and let p ( l )  be the characteristic 
polynomial of A. In this example, p ( A )  = ,I2 + 1, so that by the Cayley-Hamilton 
Theorem, we have 

p(A)=A2+Z=0 . 
Hence, differentiating the second equation in (1.2) twice (the number of times of 
differentiation will equal the degree of the characteristic polynomial of the square 
matrix A), and utilizing the first equation in (1.2) repeatedly, we have 

c x = v  

C A ~ X  = vir - CBU’ - CABU . 
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Therefore, the identity p(A) = A' + I = 0 can be used to eliminate x, yielding: 

( v i i - ~ ~ ~ r - ~ ~ ~ ~ ) + u = ~ ~ 2 ~ + ~ ~ = ~ ( ~ 2 + ~ ) ~ = ~  or 

v"+u=C(BU'+ABU) 

= c 1  01 ( [ ? ] U ' + [ ; - J U )  

=u  . 

1.2 An Example of Input-Output Relations 

More generally, if the characteristic polynomial of an n x n matrix A in an input- 
state equation such as (1.2) is 

p(L)=II"+a,P-'+ . . . +an , 

then the above procedure gives 

c x = v  

CAX = V I  - CBU * .  . # .  

C A ~ X  = uti - CBU' - C A  BU 

so that, by setting a,= 1, we have: 

That is, the input-output relation can be given by 

with a,= 1. 
A slightly more general form of (1.3) is given by 

Lv=Mu 
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However, the system with input-output relations described by (1.4) does not 
necessarily have a state-space description given by (1.2) (Exercise 1.2). We also 
remark in passing that even if it has such a description, the matrices A,  B and C 
are not unique (Exercise 1.3). 

1.3 An Example of State-Space Descriptions 

A more general state-space description of a system with input-output pairs (u, u) 
is given by 

1 = A x  + Bu 

v = C X + D U  

where A,  B, C, D are matrices with appropriate dimensions. By eliminating the 
state vector x and its derivative with the help of the Cayley-Hamilton Theorem 
as above, it is not difficult to see that the input-output pair (u, u) in (1.5) satisfies 
the relation L v = M u  in (1.4) with appropriate choices of constants aj  and b, 
(Exercise 1.4). To see the converse, that is, to show that the input-output relations 
in (1.4) have a state-space description as given in (lS),  we follow the standard 
technique of transforming an nth order linear differential equation to a first order 
vector differential equation as was done in the simple example discussed earlier 
by choosing the matrix A to be 

Of course there are other choices of A. But with this “so-called” standard choice, 
it is clear that the matrix C must be given by 

C=[1 0 . .  . O ]  

Hence, by setting B =  [fll . . . [I,,]’ and D = [ P o ]  we see that the variables of the 
vector x=[x, . . . x,]’ in (1.5) satisfy the equations: 

x ;=x2+ f11u  

x; = XJ  + p2 u 

xk-1 = X , l + / j ) n - l U  

x:,+u,x,+ . . . +unx1=pnu  

u=x,+pol*  . 

. . .  



That is, the state variables are defined by 

x,=v-p,u 

x2 =x; -filu=v'-(fiou'+pl u )  

x j  = x; - p 2 u  = 0"- (IROU" + B1u' + 1 2 4  

x,=x:,-l -pn-  1 u = U ( " - l ) -  (pou'"-"+ . 
. . .  

and must satisfy the constraint: 

x:,+a,x,+ . . . + a n x l = p n u  1 

or equivalently, 

. .  

1.4 State-Space Models 5 

+ B f l - l U )  

+ . . . +(a,fi, + a , p , ) U ~ " - ~ ~ + a o f i o u ~ ~ ~  . (1.6) 

Hence, the constants fi,, . . . , p,, are uniquely determined by the linear matrix 
equation 

where a, = 1 and bj  = 0 forj  < 0. We remark that the highest derivative of u in (1.6) 
is n, and hence the order m of the differential operator M in (1.4) is not allowed to 
exceed n. 

1.4 State-Space Models 

A system with the state-space description given by (1.5) is usually called a single- 
input/single-output time-invariant system; that is, the matrices A, B, C and D in 
(1.5) are constant matrices and the input and output functions are scalar-valued. 
In general, we have to work with time-varying systems, and in addition, the input 
and output functions may happen to be vector-valued; in other words, we may 
have a multi-input/multi-output system. The state-space description of such a 
system is given by 

f = A( t )x  + B( t)u 
u = C( t ) ~  + D( t)u . 
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The digital version of (1.7) is 

where {uk} and {uk} are input and output sequences of the discretized (or digital) 
system, respectively. Of course (1.8) is only an approximation of (1.7), for 
instance, by setting uk = u(kh), uk = u (kh),  and xk = x(kh)  where h is a sampling 
time unit. A natural choice of the matrices A, ,  Bk, C, and Dk is given by 

A,= hA ( k h ) + l  

Bk = B (kh) 

Ck=C(kh)  and 

D,=D(kh) . 

A small sampling time unit is necessary to give a good approximation. We will be 
dealing with the state-space descriptions (1.7, 8) for continuous-time and 
discrete-time systems, respectively. The vector space, spanned by the state 
vectors which are generated by all “admissible” inputs and initial states, is called 
the state-space. For a better understanding, see Exercises 2 .24.  

It will be clear from Exercise 2.5 that the outputs in the state-space 
descriptions (1.7,8) are linear in the state vectors for zero input and linear in the 
inputs for zero initial state. For this reason, the systems we consider here are 
called linear systems. In the subject of control theory, linear systems are also 
called linear dynamic systems, the state-space descriptions (1.7, 8), dynamic 
equations, and the matrices A([ ) ,  B(t), C(t), and D(t) in (1.7) or A,,  Bk,  ck, and D ,  in 
(1.8) are called system (or dynamic), control, obseruation (or output), and transfer 
matrices, respectively. 

Exercises 

1.1 Give a state-space description for the input-output relations u”+au’ + 
bu = u by using the state variables x1 = M U  + Du‘ and x2 = yu + 6u‘ where 

Determine all constants a, b and c so that the linear system with input- 
output relations u“ + u‘ = au + bu’ + cu” has a state-space description of the 
form given by (1.2). 
By using Exercise 1.1, show that the matrices A, B, and C in the state-space 
description (1.2) for the linear system with input-output relations 
u“ + ad + bu = 0 are not unique. 

1.4 Determine the constants aj  and bk in (1.4) for the input-output relations of 

Ctb-gyfo. 
1.2 

1.3 



Exercises I 

the linear system (1.5) where A,  B, C and D are arbitrary n x n, n x 1, 1 x n, 
and 1 x 1 matrices. 

1.5 (a) Give a state-space description for the two-input and two-output system 

u;'+a, ,  u; +a, ,u ,  + b l l  u; + b 1 2 u 2  = a 1  u 1  + f l 1  u 2  

u ; r + a 2 1  u; +a, ,u ,  + b 2 1 u ;  + b 2 2 U 2  = a 2 u 1  +&u2 . 

(b) Derive a general state-space description for the normal n-input and 
n-output system 

. . .  
n n 1 ( a 1 . u ~ - j ) + a 2 . u ( n - i ) +  . . . + a n , U ( n - j )  

n J  n J  2 n j  n I =  X n j u j  . 
j =  1 j =  1 

1.6 (a) Give a state-space description for the discrete-time system defined by 
the difference equation 

/ 

Hint: Let . X ~ , ~ = ~ ~ , X ~ , ~ = V ~ + ~  and i 
(b) Derive a general state-space description for the discrete-time system 
defined by the difference equation 

a O U k + n + a l u k + n - l +  . . . + a n u k = b O u k + m +  . . . $ b m u ,  , 

where a, = 1, m s n ,  and m, n are arbitrary positive integers. 



2. State Transition Equations and Matrices 

In this chapter, we will discuss the solution of the state-space equation assuming 
that the initial state as well as all the governing matrices are given. Both 
continuous-time and discrete-time systems will be considered. It is clear that only 
the input-state equation has to be solved. 

2.1 Continuous-Time Linear Systems 

From the theory of ordinary differential equations, if A(t)  is a n  n x n  matrix 
whose entries are continuous functions on an  interval J which contains to in its 
interior, then the initial value problem 

where c , = [ 0  . . . 0 I 0 .  . . O]’, the entry 1 being the ith component, has a 
unique solution which we will denote by 4,(f, to) .  Let @(t,  t o )  be the 11 x n matrix 
with 4,(t, t o )  as its ith column. Since these column vectors are linearly indepen- 
dent, the “fundamental matrix” @(t ,  t o )  is nonsingular. For convenience, we 
assume that J is a n  open interval. Since the above discussion is valid for any to in 
J ,  we could consider @(s, t )  as a matrix-valued function of two variables in J .  
Clearly, 

@(t ,  t ) = I  , 

the identity matrix, for all I in J .  Set 

F(S, f )=@(S ,  T ) @ - ’ ( f ,  5 )  

Then F ( s ,  T ) = @ ( S ,  T )W’(T ,  T ) = @ ( s ,  T), i t . ,  F = @ ,  so that 

@(s ,  t ) = @ ( . S ,  T ) @ - ’ ( t ,  5 )  

or, equivalently, @(s, 1 )  satisfies the “transition” property: 
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@(s, 5 )  = @(s, t)@(t> 7) , (2.2) 

We now consider the input-state equation with a given initial state xo at time 
where s, t ,  and T are in J .  

to ,  namely 

i = A ( t ) ~  + B(t)u 

x( t , )=x ,  , 
(2.3) 

where A ( t )  and B(t) are n x n  and n x p  matrices respectively, and u is a 
p-dimensional column vector. Although weaker conditions are allowed, we will 
always assume, for convenience, that all entries of A(t )  are continuous functions 
on J and that the entries of B(t) as well as the components of u are piecewise 
continuous on J .  Again from the theory of ordinary differential equations, (2.3) 
has a unique solution given by 

f 

x ( t ) = @ ( t ,  to )x ( to )+  1 @(t, T ) B ( ~ ) ~ ( T ) ~ T  , (2.4) 

where, as usual, integration is performed componentwise, and @(c, t o )  is the 
fundamental matrix of the first order homogeneous equation i = Ax discussed 
above. In the subject of control theory, one could think of u as the control 
function that takes an initial state x(to) to a state x ( t )  in continuous time from 
time to to time t ,  and “equation” (2.4) describes how this is done. Because of its 
formulation, this equation is also called the (continuous-time) integral equation 
of u. Note that the solution of this equation for the control function u that takes 
x ( to )  to x(t) is given by the input-state equation (2.3). The matrix O(t, t o )  that 
describes this transition process is usually called the transition matrix of the 
linear system. 

f 
0 

2.2 Picard’s Iteration 

In order to have a better understanding of the transition process, it is important 
to study the transition matrix. We first consider the special case where A = [aij] is 
a constant matrix. Denote by ( A I ,  the I’ norm of this matrix; that is 

By Exercise 2.8, we have lAZI ,  5 I A I;, . . . , I A“ I I I A 17, . . . , and this allows us 
to define 
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since the sequence of partial sums of the infinite series is a Cauchy sequence: 

which tends to 0 as M and N tend to infinity independently. (Here, the triangle 
inequality in Exercise 2.8 has been used.) In addition, it is also clear from this 
infinite series definition that 

Hence, it follows immediately that the solution 4,(t, t o )  of (2.1) is given by 

$,( t ,  t o )  = e(' e, ; 

that is, the transition matrix in (2.4) for the system with constant system matrix A 
is given by 

When A = A ( t )  is not a constant, that is when time-varying state-space 
equations are considered, an explicit formulation of the transition matrix is 
usually difficult to obtain. The following iteration process, usually attributed to 
Picard, gives an approximation of @(t ,  to) .  Again, for convenience, we assume 
that the entries of A ( [ )  are bounded functions in J ,  so that a positive constant C 
exists with 

I A ( t ) ( , < C < o o ,  t € J  . 

We start with the identity matrix. Set 

Po(t)=Z 



2.2 Picard's Iteration 11 

Then for all t E J and N > M ,  we have 

f0 f0 f0 

f SI. 

N-  1 
5 k = M  1 Is.. . 1 ds , , ,  . . . dsl1Ck+' 

which tends to zero uniformly on any bounded interval as M ,  N + co 'indepen- 
dently. That is, { P N ( t ) }  is a Cauchy sequence of matrix-valued continu- 
ously differentiable functions on J .  Let P (t, t o )  be its uniform limit. Since 

and P N ( t O ) = Z ,  it follows from a theorem of Weierstrass that 

P(to,  t 0 ) = Z  . 

This, of course, means that the columns of P(t ,  t o )  are the unique solutions 
$i(t, t o )  of the initial value input-state equations (2.1), so that P(t ,  t o )  coincides 
with O(t, to) .  We have now described a simple iteration process that gives a 
uniform approximation of @(t,  to). It also allows us to write: 

It is clear that if A = A(t )  is a constant matrix, then (2.5) and (2.6) are identical, 
using the definition of exp[(t- t o )A] .  
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2.3 Discrete-Time Linear Systems 

We now turn to the discrete-time system. The input-state equation with a given 
initial state xo is given by 

x,+ = A,x, + B,u,, k =0, 1, . . . , (2.7) 

where A, and B, are n x n and n x p matrices and u,, k=O,  1, . . . , are 
p-dimensional column vectors. Writing out (2.7) for k = 0, 1, . . . , respectively, we 
have 

. . .  

xk + 1 A,x, + B,u, . 

Hence, by substituting the first equation into the second one, and this new 
equation into the third one, etc., we obtain 

where we have defined the “transition” matrices: 

CD,,  = I  

a. = A .  . A ,  for j > k  
(2.9) 

In particular, if A, = A for all k ,  then C D j k  = A’-,  for j 2  k.  Equation (2.8) is called 
the (discrete-time) stute transition equution corresponding to the input-state 
equation (2.7) and Q j k  ( j 2 k )  are called the transition matrices. The state 
transition equation describes the transition rule in discrete-time that the control 
sequence ( u k }  takes the initial state x, to the final state x N .  We remark, however, 
that although the transition matrices a,, satisfy the “transition” property 

Ojk is not defined for j  < k ,  and in fact, even if A, = A for all k ,  mi, ( i  > k )  is singular if 
A is. This shows that discrete-time and continuous-time linear systems may have 
different behaviors. However, if the system matrices A, ,  . . . , A j -  where k <j,  
are nonsingular, i t  is natural to introduce the notation Dkj=  A;’ . . . so 
that C D k j = @ , < ’  or akj(Dik=1, completing the transition property. 
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2.4 Discretization 

If the discrete-time state-space description 

(2.10) 

is obtained as an approximation of the continuous-time state-space description 

x = A ( t ) x  + B( t )  u 

u = C ( t ) x + D ( t ) u  
(2.1 1 )  

by setting, say, xk=x(kh) ,  u,=u(kh) and q = u ( k h ) ,  then the singularity of the 
matrices A,,  and consequently of the transition matrices mjk ( j > k ) ,  may result 
from applying a poor discretization method. In order to illustrate our point here, 
we only consider the case where A = A(t )  is a constant matrix. 

As pointed out in the last chapter, a “natural” choice of A ,  is 

A,=I+hA(kh)  , (2.12) 

the reason being 

xk + 1 - xk A h.t(kh) h( A (kh)xk - B(kh)u, ) . 

Of course, if the time sample h is very small then A, will usually be nonsingular. 
However, in many applications, some entries of A may be very large negative 
numbers so that it would become difficult, and sometimes even numerically 
unstable, to choose very small h. The state transition equation (2.4) with the 
transition matrix given in (2.5), being an integral equation, gives a much more 
numerically stable discretization. Setting to = kh and t = ( k  + 1)h, we have 

X k + I - ( D ( ( k +  l)h, k h ) X k + ( k \ l ) h  ( D ( ( k +  l ) h ,  T )  B( t )u(r)dt  , (2.13) 

so that the matrix A ,  in the discrete-time state-space description (2.10) is now 

k h  

A ,=(D((k+  l)h, kh)  . (2.14) 

This is a nonsingular matrix, and consequently the corresponding transition 
matrix becomes 

Oij=O(ih, j h )  . 

We note, in particular, that the restriction i > j  can now be removed. We also 
remark that if A is a constant matrix the choice of A in (2.12) as a result of 
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discretizing the input-state equation (2.1 1) gives only the linear term in the series 
definition of exp (hA). To complete the discretization procedure in (2.13), we 
could replace u(z) by uk and apply any simple integration quadrature to the 
remaining integral. If, for instance, both A and B in the continuous-time state- 
space description (2.1 1)  are constant matrices, then the remaining integral is 
precisely 

h 

0 

and the matrix B, in the corresponding discrete-time state-space (2.10) descrip- 
tion becomes 

which is again a constant matrix. 

Exercises 

, 2.1 Solve the differential equation (2.1) for 

and determine the corresponding transition matrix @(t, to). 

, 2.2 Recall that the state space X is the vector space of all (vector-valued) 
functions each of which is a (unique) solution of (2.3) for some initial state 
and some input (or control) u. Consider an admissible class % of input 
functions and let X("&) be the subspace of X where only input functions in 42 
are used. Determine X("&) for A = [O], B =  [ l ]  and q = s p {  1, . . . , t" ),  the 
linear span of I ,  . . . , r N .  

- 2.3 Repeat Exercise 2.2 for the admissible class @=sp{u,, . . . , u N }  where 

0 if [ < t i  

1 if t 2 t i  
U i ( t )  = 

and O=to<t ,<  . . . <t,<cc . 
2.4 Refer to Exercise 2.2 for the necessary definitions. Let 

A = [ :  61 and .=[:I . 

Find a basis of X(sp{l, . . . , t")). 
(Hint:  Use the state transition equation.) 
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2.5 Show that a system with state-space description given by (2.10) or (2.11) is 
indeed a linear system in the sense that the output is linear in the state 
vectors for zero input and linear in the input vectors for zero initial state. 
(Hint: An operator L is said to be linear if L (ay  + bz) = a L y  + hLz.) Also 
show that if the output is linear in the input and xo is the initial vector, then 
C,x,=Oforall kif(2.10)isconsidered,and C(t)x,=Oforall trtoif(2.11)is 
considered. - 2.6 Let I A ( ,  be the l p  norm of the matrix A = [a i j ( t ) ] ,  that is, IAl,=IA(t)l, 
=(Xi, j~aij(t)~p)l’p. Under the hypothesis 

jI4t)l::dt- 3 

J 

where p > l ,  prove that the infinite series (2.6) converges uniformly to 
@(t, to) on every bounded subinterval of J .  
(Hint: Use Holder inequality: 

j IA(t)B(t)lI dt I( jIA(t)l;)””(jI B ( t ) l y q  7 

J J J 

where I / p+ l /q= l  and l<p<co.)  
Discretize the continuous-time input-state equation , 2.7 

[:;I=[’ 0 -10 -51  [“I]+[ x2 
- # + l )  

by using both methods discussed in Sect. 2.4 and compare both transition 
state equations. Try to bring [;I to the origin in both cases. Use h= 1/5 
and 1/10. 
Let I A 1, be defined as in Exercise 2.6. Show that if A and B are matrices of 
the same dimension, then I A + B 1, I I A I p  + 1 BI, (called the triangle in- 
equality). 
(Hint: Use the Holder inequality: For real numbers aij and b,,, 

- 2.8 

where l / p+ l /q= l  and l<p<co) .  



3. Controllability 

The notion of controllability is introduced in this chapter. Both continuous- and 
discrete-time systems will be studied. If the system is time-invariant, then its 
controllability is completely determined by a constant matrix. 

3.1 Control and Observation Equations 

A linear system with continuous-time state-space description 

f = A (t)x + B( t)u 

u = C( t ) x  + D( t)u 

can be considered as a “control-observation” process, with u= u(t) denoting the 
contro1,function and u =  u ( t )  the observation function. Under the influence of the 
control u, the state vector x = x ( t )  travels in the n-space iw” and traces a path in iw” 
as time increases in the allowable time interval. In order to give a more complete 
discussion, we always assume that the time interval J extends to positive infinity. 
and to apply the theory developed in Chap. 2, we also assume that the n x n  
system matrix A = A ( t )  has continuous entries on J .  If  the admissible class of 
control functions u contains only piecewise continuous (or more generally 
bounded measurable) functions on J ,  then the entries of the control matrix 
B = B(t)  are allowed to be piecewise continuous (or more generally bounded 
measurable) functions; but if delta distributions are used as control “functions”, 
then we must restrict the entries of the control matrix to continuous functions on 
J .  The first equation in (3. l ) ,  namely the input-state relation, describes the 
control process and hence will be called the control diferenrial equution. From 
Sect. 2.1, we know that this equation has an equivalent formulation 

x(r)=@(t ,  to)x( to)+ i @ ( t ,  s)B(s)u(s)ds 
111 

which describes the path of travel of the state vector x under the influence of the 
control function u as the time parameter t increases starting at the initial time 1,. 
Since the transition matrix @(t ,  t o )  in the state-transition equation ( 3 . 2 )  is always 
nonsingular. the transition process is reversible; that is, multiplying both sides of 
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(3.2) by W 1 ( t ,  to)=@(t,, t ) ,  we obtain the same equation with t and to  inter- 
changed (although t > to). The second equation in the state-space description 
(3.1) will be called the observation equation since it describes the observation 
process. Of course analogous terminology and discussion apply to the discrete- 
time state-space description, but since the transition matrix in the discrete (or 
digital) model may turn out to be singular, a reversed transition may be 
impossible. We will postpone discussing the control properties of this model to 
the end of this chapter. 

3.2 Controllability of Continuous-Time Linear Systems 

The notion of controllability and complete controllability is introduced in this 
section. We first discuss controllability of a continuous-time linear system; the 
discrete-time setting being delaycd to Sect. 3.4. 

Definition 3.1 A linear system Y with a state-space description given by (3.1) is 
said to be controllable if, starting from any position xo in R", the state vector x at 
any initial time to E J ,  can be brought to the origin 0 in R" in a finite amount of 
time by a certain control function u. In other words. the system Y is controllable 
if for arbitrarily given x, E iw" and t ,  E J ,  there exists a t ,  2 t ,  such that the integral 
equation 

has a solution u in the admissible class of control functions. 
Hence, to verify controllability, one has to prove the existence of both t ,  2 to 

and a control function u for any position q, in R". Our first goal is to eliminate 
the difficulty imposed by the dependence of time on space by proving the 
existence of a "universal" finite time-interval. To do this we introduce the 
following subspaces. Let t o E J  be fixed, and for each t ,  >to ,  let Vi, be the 
collection of all xo in iw" such that (3.3) has an admissible solution u, and 

V = U {  Vi, : t i  > t o }  . 

Then the above definition of controllability has the following equivalent 
statement. 

Lemma 3.1 Y is controllable if and only if V =  R". 

It is clear that I/ and Vi, t 2 t , ,  are all subspaces of R" and that if (3.3) has a 
solution u and t , 2 t 1 ,  then (3.3) with t ,  replaced by t ,  also has a solution 
(Exercise 3.1). Hence Y, is a subspace of Vi if t2s2t0. Let .f(t) denote the 
dimension of V,. Then f is a nondecreasing integer-valued function with 

limf(r)=dim V < n  . 
t -  w 
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By using the definition of limit, there is a t* 2 to such that If(t) -dim VI < 1/2 for 
all t 2t*, which implies immediately thatf(t*)=dim V and V,,= I/. That is, we 
have proved the following result. 

Theorem 3.1 Let ,Y be a linear system with the state-space description (3.1) and 
to  E J .  Then there exists n (,finite) t* 2 to with V,, = V. Furthermore, the system Y is 
controllable if and only if for any x, E R“ the equation 

t- 

@(t*, to)xo + J@(t*, s)B(s)u(s)ds=O 
i o  

has an admissible solution u. 

The interval (to,  t*) will be called a universal time-interval for the system Y 
with initial time to. As discussed earlier (Exercise 3. t), if (3.3) has a solution u with 
t ,  < t*, then it has a solution when t ,  is replaced by t*. 

In the study of controllability, two linear transformations are of particular 
importance. They are 

f 

L,u= J@(t, s)B(s)u(s)ds and 
io 

(3.4) 

The first one maps the space of admissible control functions into Iw” and the 
second one is an n x n matrix. We will next show that they have the same image. 
Using notation from linear algebra, we let “Im” denote “the image of” and “v” 
denote “the null space of”. 

Lemma 3.2 Im{L,} = Im{ Q,} for all t 2 to. 

We first show the easy direction. Let x be in ImtQ,}. Then there is a Y E  R” 
such that 

f 

x=Qiy=J  @(t, s)B(s)u(s)~s=L,u  
io 

with u defined by 

u(s)= BT(s)QT(t, S)Y . 

To establish the other direction, we first note that Q, is symmetric so that Im{Qi} 
is orthogonal to vQ, (Exercise 3.2). Hence, ifx is not in Im{Q,}, we can decompose 
x i n t o x = x , + x ,  wherex, ~1m{Q,>  andO#x,EvQ,,so that x T x 2 = x ~ x z + x ~ x 2  
=xTx,#O. If, on the other hand, x is in Im{L,}, then there is some control 
function u with L,u=x, so that 

f 
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and x;@(t, s)B(s) cannot be 0. This contradicts the fact that 

t 1 I [ x l @ ( t ,  s)B(s)] [ ~ ; @ ( t ,  s ) B ( s ) ] ~ ~ s  =x,T J@( t ,  s )B(s)B~(s)@’(~,  s)ds x2 
to c: 

= x ; Q t x 2 = 0 .  

That is, if x 6 Im{ Q,} ,  then x q! Im{L,} either, establishing the other direction of 
the lemma. 

We are now ready to state an important result of controllability. 

Theorem 3.2 Let Y be a continuous-time linear system with a universal time 
interval (to, t * ) c  J .  Then Y is controllable with initial time to i f  and only i f  the 
matrix Qr* is nonsingular. 

This result follows from Lemma 3.2 by using t = t* and the fact that @(t*, to)  is 
nonsingular (Exercise 3.3). It should be pointed out that in general it is 
impossible to determine the rank of the matrix Qt* since it is very difficult to 
decide how large t* has to be. However, if the system and control matrices A and 
B, respectively, are constant matrices, then Qtt is nonsingular if and only if Q, is 
nonsingular for any t > to (Exercises 3.4 and 5). As a consequence of Theorem 3.2, 
we can extend the idea of controllability to “complete controllability”. 

3.3 Complete Controllability of Continuous-Time Linear Systems 

We next discuss the notion of complete controllability. 

Definition 3.2 A system Y with state-space description (3.1) is said to be 
completely controllable if, starting from any position xo in R”, the state vector x at 
any initial time t O E J  can be brought to any other position x1 in R“ in a finite 
amount of time by a certain control function u. In other words, Y is completely 
controllable, if for arbitrarily given xo and xl in DB” and t o  E J ,  there exists a t ,  2 to 
such that the integral equation 

f l  

@ ( t i ,  Lobo+ { @ ( t i l  s)B(s)u(s)ds=xi 
10 

has a solution u in the admissible class of control functions. / 
It is important to observe that, at least in continuous-time state-space 

descriptions, there is no difference between controllability and complete 
controllability. It will be seen later that this result does not apply to discrete-time 
linear systems in general. 

Theorem 3.3 Let Y be a continuous-time linear system. Then 9 is completely 
controllable ifand only i f i t  is controllable. Furthermore, $( to ,  t * ) c  J is a universal 
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time-interval and xo, x1 are arbitrarily given position vectors in R", then the 
equation 

f' 

@(t*, t,)x, + i@(t*, ~ ) B ( ~ ) u ( ~ ) d s = x ,  
f 0 

has an admissible solution u. 

In fact we can prove more. L,et ( to ,  t*) be a universal time-interval. We 
introduce a universal control function u=u* that brings the state vector x from 
any position yo  to any other position y1 in R" defined by 

u*(t)=BT(t)OT(r*, t)Qt; ' (y l  -@(t*, to)yo) . 

This is possible since Qf. is nonsingular if the system is controllable by using 
Theorem 3.2. 

Next, we consider the special cases where the n x n system matrix A and the 
n x p control matrix B are constant matrices. Under this setting, we introduce 
an n x pn "compound" matrix 

hf , ,=[B A B .  . . A"-'!?] (3.7) 

and give a more useful criterion for (complete) controllability. 

Theorem 3.4 
controllable if and only if the n x pn matrix M A ,  has rank 11. 

A time-invariant (continuous-time) linear sq~stem .Y' is (completely) 

To prove this theorem, let us first assume that the rank of M A ,  is less than n, 
so that its n rows are linearly dependent. Hence, there is a nonzero n-vector a 
with a T M A B = = L O . .  . 01, or  equivalently, a7B=arAB= . . . =aTA"- 'B=O.  An 
easy application of the Cayley-Hamilton Theorem now gives aTAkB=O for 
k = O ,  1 ,2 , .  . . , so that a"exp[(t*-.s)A]B=O also (Exercise 3.7). Hence, 

Hence, there does not exist any control function u that can bring the state vector 
from the position y o = O  to those positions y I  with aryl # O .  In particular, the 
position y ,  = a # O  cannot be reached from 0. Hence, (complete) controllability 
implies that M A ,  has rank n. Conversely, let us now assume that M,iB has rank 11, 

and contrary to what we must prove, that .Y is not controllable. Let (to,  t*) be 
a universal time-interval. Then from Theorem 3.2 we see that Qr* is singular so 
that there exists some nonzero X ~ E R "  with Qr*xO=O. Hence, since @(t,s)= 
exp[(t - s)A] ,  we have 

f *  

S ( x ~ e " * - " ) A B ) ( x ~ e ( ' * - r ) n B ) T d s  = x;Q,* x, = O  
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so that 

T ( I * - S ) A B =  0 x0e 

for t o  5 s 
s = t*, we have 

t*. Taking the first (n - 1) derivatives with respect to s and then setting 

. r iAkB=O, k=O, .  . . , n-  1 , 

so that x,7MA,=0. This gives a row dependence relationship of the matrix M A ,  
contradicting the hypothesis that M A ,  has rank n. 

In view of Theorem 3.4, the matrix M A ,  in (3.7) is called the controllability 
rnutrix of the time-invariant system. 

3.4 Controllability and Complete Controllability 
of Discrete-Time Linear Systems 

We now turn to a linear system Y with a discrete-time state-space description 

(3.8) 

where the first equation is called the control difference equation and the second 
will be called the obseruation equation in the next chapter. The state-transition 
equation can be written, by a change of index in (2.8), as 

k 

x , = @ k j X j +  @ k i B i _ , u i - ,  (3.9) 
i = j + l  

where the transition matrix is 

@ ) k j = A k - l . .  . A i ,  k > j  (3.10) 

with Okk = I ,  the identity matrix. Analogous to the continuous-time state-space 
description, we define “controllability” and “complete controllability” as follows: 

Definition 3.3 A system 9’ with a state-space description given by (3.8) is said 
to be controllable if, starting from any position yo in R”, the state sequence { x k } ,  
with any initial time I ,  can be brought to the origin by a certain control sequence 
{ U k ]  in a finite number of discrete time steps. It is said to be completely 
controllable, i f i t  can be brought to any preassigned positiong, in R“. That is, ,Y is 
controllable if for any go in R” and integer I ,  there exist an integer N and a 
sequence {uk)  such that 

( 3 .  I 1) 
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and is completely controllable if for an additional preassigned y ,  in R", N and 
{u,} exist such that 

(3.12) 

Unlike the continuous-time system, there are controllable discrete-time 
linear systems which are not completely controllable. An example of such a 
system is one whose system matrices A ,  are all upper triangular matrices with 
zero diagonal elements and whose n x p control matrices B, = [b i j (k ) ] ,  p s n ,  
satisfy b i j ( k )  = 0 for i 2j. For this system even the zero control sequence brings 
the state from any position to the origin but no control sequence can bring the 
origin to the position [O . . . 0 IIT (Exercise 3.8). 

Any discrete-time linear system, controllable or not, has a controllable 
subspace Vof position vectors yE R" that can be brought to the origin by certain 
control sequence in a finite number of steps. Let V, be the subspace ofyg  R" that 
can be brought to 0 in k -  I +  1 steps. Then ify can be brought to zero in j, steps 
andj,  < j 2 ,  it can certainly be brought to zero in j, steps, it then follows that Vj is 
a subspace of V, f o r j s  k .  Letf, be the dimension of Vk. Since Vis the union of all 
Vk, k21, {f,} converges to dim V .  Therefore there exists an / * > I  such that 
VI: = V. { I ,  . . . , I * }  will be called a universal discrete time-interval of the system. 
This gives the following result. 

Theorem 3.5 Let .Y be a discrete-time linear system and 1 any integer. Then there 
exists an integer I* > 1 such that VI*= V. Furthermore, Y is controllable ifand only 
i f for any yo  in R" there exists {u,, . . . , u, * - , }  such that (3.11) is satisjied with 
N = I*. 

Let { I , .  . . , 1*} be a universal discrete time-interval of the system, and 
analogous to the continuous-time setting, consider the matrix 

I' 

(3.13) 

If R,* is nonsingular, a universal control sequence can be constructed following 
the proof of Theorem 3.3 to show that the system is completely controllable. On 
the other hand, if the transition matrices are nonsingular, controllability implies 
that R,* is nonsingular (Exercise 3. IO). Hence, we have the following result. 

Theorem 3.6 Let Y be a discrete-time linear system with initial time k = I and 
nonsingular system matrices A,, . . . , A,*- where (1, . . . , I * }  is a universal discrete 
time-interval. Then Y is completely controllable f and only if it is controllable. 

It is important to note that although the system matrices, and consequently 
the transition matrices, could be singular, i t  is still possible for the matrix R,* to 
be nonsingular. In fact, regardless of the singularity of A,, . . . , A,*- the 
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nonsingularity of R,* characterizes the complete controllability of the discrete- 
time system. 

Theorem 3.7 
if the matrix R,* is nonsingular. 

One direction of this statement follows by constructing a universal control 
sequence with the help of RF’ (Exercise 3.10). To prove the other direction, we 
imitate the proof of Lemma 3.2 by investigating the image of the linear operator 
Sf* defined by 

A discrete-time linear system is completely controllable if and only 

I* 

(3.14) 

Clearly, if the system is completely controllable so that any position in R“ can be 
“reached” from 0, then the image of SI* is all of R”. Hence, if one could show that 
the image of R,* is the same as that of Sf*, then R,* would be full rank or 
nonsingular. The reader is left to complete the details (Exercise 3.15). 

We now consider time-invariant systems. Again the controllability matrix 

M,,=[B A B . .  . A”-’B] 

plays an important role in characterizing complete controllability. 

Theorem 3.8 
lable if and only if its controllability matrix has full rank. 

state-transition equation (3.9) becomes: 

A time-invariant discrete-time linear system is completely control- 

Since we only consider constant system and control matrices A and B, the 

k -  - ~ k - l  XI+ 2 A k - ’ B U i - l  , 
i = l + l  

where again 1 is picked as the initial time. In view of the Cayley-Hamilton 
Theorem, it is natural to choose 1* = n + I ,  n being the dimension of the square 
matrix A. That is, the state-transition equation becomes 

(3.15) 

Hence, if any “position” x, in R” can be “reached” from x l  = 0, the range of M A ,  is 
all of R” so that it has full rank. Conversely, if the row rank of M A ,  is full, then the 
sequence {u l , .  , . , u,+,- can be obtained for arbitrary initial and final states x, 
and x,, respectively, by solving (3.1 5). This completes the proof of the theorem. 

As a bonus of the above argument, we see that ( I ,  . . . , n+ l }  is a universal 
discrete time-interval. That is, if the state vector xk at a position y o  in R” cannot 
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be brought to the origin in n steps, it can never be brought to the origin by any 
control sequence uk no matter how long it takes. 

Exercises 

3.1 

3.2 

3.3 
3.4 

3.5 

3.6 

3.7 

3.8 

Let V,  be the collection of all xo in R" that can be brought to the origin in 
continuous-time by certain control functions with initial time to and 
terminal time t ,  and V be the union of all V,. Prove that V and V, are 
subspaces of R". Also show that V ,  is a subspace of V,  if and only if s 5 t by 
showing that if xo can be brought to 0 at terminal times, it can be brought 
to 0 at terminal time t .  
Let R be a symmetric n x n matrix and consider R as a linear trans- 
formation of 02" into itself. Show that each x in R" can be decomposed into 
x=x ,  +x, where x,  is in Im{ R) and x2 is in vR and that this decomposit- 
ion is unique in the sense that if x is zero then both x1 and x, are zero, by 
first proving that Im(R) =(vR)'. 
By applying Lemma 3.2 with t = t*, prove Theorem 3.2. 
Let 

A = [ :  i] and l?=[i]. 

Find Q, and determine if the linear system is controllable. 
Let 

A = [ :  A] and .=[;I. 
Determine all values of u and b for which the linear system is controllable. 
Verify the statement that if Q, is nonsingular for some t, it is also 
nonsingular for any t > to. 
Let Qt* be nonsingular where ( to,  t * )  is a universal time-interval. Show that 
the universal control function 

u*(t) = B'(t)@'(t*, tlQ7 Cyl - @(t*,  tO)yO] 

brings x from yo  to y l .  (This proves Theorem 3.3). 
Let A be an n x n matrix. Show that if a'Ak=O for k = O ,  . . . , n-  1, then 
a'exp(hA)=O for any real number h and CIE R". 
Let A k = [ u i j ( k ) ]  be n x n  and B k = [ h j j ( k ) ]  be n x p  matrices where p<n  
such that uij ( k )  = h j j  ( k )  = 0 if i >I. Show that the corresponding discrete- 
time linear system is controllable but not completely controllable. Also, 
verify that the system 
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is controllable but not completely controllable for any real numbers a 
and b. 

3.9 Let 

Ak=[  O k  ] and B , = B = [ ; ] .  
0 0  

Although the system matrices A ,  are singular, show that the correspon- 
ding linear system is completely controllable and that any universal 
discrete time-interval is of “length” two. 
Prove that if R,* is nonsingular then the corresponding linear system is 
controllable. Also show that if the state vector xk can be brought from xo 
to the origin then y o  = -@plx0 is in the image of R,*. This last statement 
shows that R,* is nonsingular sincey, represents an arbitrary vector in R”. 

3.11 By imitating the proof of Theorem 3.3 in Exercise 3.6, give a proof of 
Theorem 3.6. 

3.12 Show that a universal discrete time-interval for a time-invariant system 
can be chosen such that its “length” does not exceed the order of the 
system matrix A. Give an example to show that this “length” cannot be 
shortened in general. 
Let Y be a linear system with the input-output relation u”+au’+bu= 
cu‘+du. Determine all values of a, h, c, and d for which this system is 
(completely) controllable. 

3.14 Let ,Y be a discrete linear system with the input-output relation 
uk + + auk + + bu, = uk + + cuk. Determine all values of a, b and c for which 
this system is controllable, and those values for which it is completely 
controllable. 

3.15 Complete the proof of Theorem 3.7 by showing that R,* and S,* have the 
same image. 

3.10 

3.13 



4. Observability and Dual Systems 

In studying controllability or complete controllability of a linear system Y ,  only 
the control differential (or difference) equation in the state-space description of 9’ 
has to be investigated. In this chapter the concept of “observability” is 
introduced and discussed. The problem is to deduce information of the initial 
state from knowledge of an input-output pair over a certain period of time. The 
importance of determining the initial state is that the state vector at any instant is 
also determined by using the state-transition equation. Since the output function 
is used in this process, the observation equation must also play an important role 
in the discussion. 

4.1 Observability of Continuous-Time Linear Systems 

Again we first consider the continuous-time model under the same basic 
assumptions on the time-interval J and the n x n and n x p matrices A(t )  and B(t), 
respectively, as in the previous chapter. In addition, we require the entries of the 
q x n and q x p matrices C( t )  and D(t), respectively, to be piecewise continuous (or 
more generally bounded measurable) functions on J .  

We will say that a linear system Y with the state-space description 

f = A ( t ) x  + B ( t )  u 

u = c ( t )  x + D ( t )  u (4.1) 

has the observability property on an interval ( t o ,  t l )  c J ,  if any input-output pair 
(u(t) ,  u(t ) ) ,  to <: t I t , ,  uniquely determines an initial state x(to) .  

Definition 4.1 A linear system Y described by (4.1) is said to be observable at an 
initial time to  if it has the observability property on some interval ( t o ,  t l )  where 
t ,  >to. It is said to be completely observable or simply observable if it is 
observable at every initial time t o  E J .  

Definition 4.2 A linear system Y described by (4.1) is said - .  , 
observable at an initial time to if it has the observability property on every interval 
(to, t l )  where t ,  > t o .  It is said to be totally observable if it is totally observable at 
every initial time to  E J .  
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It is clear that every totally observable linear system is observable. But there 
are observable linear systems that are not totally observable. One example is a 
time-varying linear system with system and observation matrices given by 

respectively. This system is observable at every initial time to 20, totally 
observable at to> 1, but not at any initial time between 0 and 1 (Exercise 4.1 j. 
Another interesting example is a linear system with the same system matrix A 
and with the observation matrix given by [l 1 + It- 111. It can be shown that this 
system is totally observable at any initial time to  with O s t ,  < 1 but is not 
observable at any to 2 1 (Exercise 4.2). To understand the observability of the 
above two linear systems and other time-varying systems in general, it is 
important to give an observability criterion. The matrix 

i 

Pi= J @'(T, to)CT(T)C(T)@(T, to)dT 

plays an important role for this purpose. 
io 

Theorem 4.1 A linear system Y described by (4.1) is observable at an initial time 
to ifand only ifthe square matrix P, given by (4.2) is nonsingular for some value of 
t > t o .  In fact, it has the observability property on ( to,  t l )  if and only if PI, is 
nonsingular. 

Suppose that Y is observable at to, and the zero-i-nput is used with output 
uo( t ) .  Then there is a t ,  > to such that the pair (0, uo(t) ) ,  for to st I t , ,  uniquely 
determines the initial state x(to) .  Assume, contrary to what has to be proved, that 
Pi is singular for all t > to. Then, there is a nonzero xo (depending on t l )  such that 

x;Pi lxo=o  . 

It therefore follows from (4.2) that 

C(t)@(t ,  to )x ,  =o  
for to I t  I t ,  . However, from the state-transition equation with u= 0, we also 
have 

v o w =  C(t)@(t ,  to)x(to) 9 * 

so that uo(t)  = C(t)@(t ,  to ) (x ( to )  + ax,) for any constant a, contradicting the fact 
that the pair (0, uo(t)), t , < t s t , ,  uniquely determines x(to). To prove the 
converse, assume that Pi,  is nonsingular for some t ,  >to.  Again from the state- 
transition equation, together with the control equation in (4.1), we have 

(4.3) 
f 

C(t)@(t ,  t o )x ( to )=  o(t)-D(t)u(t)+ J C(t)@(t ,  T)B(z)u(T)d? . 
io 
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Multiplying both sides to the left by @'(t, t o ) C T ( t )  and integrating from to to t , ,  
we have 

T)B(  T ) U ( T )  dTdt . 

Since Pf, is nonsingular, x( t , )  is uniquely determined by u and v over the time 
duration ( to ,  t l ) .  This completes the proof of the theorem. . 

For time-invariant systems, we have a more useful observability criterion. 
Let A and C be constant n x n  and q x n  matrices and consider the q n x n  
compound matrix 

In view of the following theorem, NCA will be called the observability matrix of the 
linear system. 

Theorem 4.2 A time-invariant (continuous-time) linear system Y is observable if 
and only i f the qn x n matrix N C A  has rank n. Furthermore, ifY is observable, it is 
also totally observable. 

Let us first assume that the rank of NCA is less than n, so that the columns of 
NCA are linearly dependent. That is, a nonzero n-vector u exists such that 
NCAu= 0, or equivalently, 

Cu=CAu= . . . =CA"-'U=O . 

An application of the Cayley-Hamilton Theorem immediately gives C exp[(z 
- to )A ]  u=O for all z>t ,  (Exercise 3.7). Now, multiplying to the left by the 
transpose of Cexp[(z-t,)A] and integrating from to to t,  we obtain 

P*u=O 

by using (4.2) and the fact that @(T,  to)=exp[(z-to)A]. This holds for all t>to. 
That is, Pf is singular for all t > to where to was arbitrarily chosen from J .  It 
follows from Theorem 4.1 that Y is not observable at any initial time t o  in J .  
Conversely, let us now assume that NCA has rank n and let to be arbitrarily 
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chosen from J .  We wish to show that .Y is not only observable at to ,  but is also 
totally observable there. That is, choosing any t ,  >to  and any input-output pair 
(u, u); we have to show that the initial state x(to)  is uniquely determined by ~ ( t )  
and u(t) for to I t I t , . Let i ( t o )  be any other initial state determined by u(t)  and 
v(t)  for to ~t s t , .  We must show that i ( t , )  =x( t , ) .  Now since both x ( to )  and 
i ( t o )  satisfy (4.3) for to I t I t , ,  taking the difference of these two equations yields 

C(t)@(t,  t o ) [ x ( t , ) - i ( t O ) ]  = ce(t-lo’”[x(to)-i(to)] = O  , 

for to I t I t ,  . By taking the first (n  - 1) derivatives with respect to t and setting 
t = to ,  we have 

CAk(x( to) - i ( t0 ) )=O,  k = O ,  . . . , n-  1 , 

which is equivalent to NCA [ x ( t o )  - i ( t o ) ]  =O. Since NCA has full column rank, we 
can conclude that x ( t o )  and i ( t o )  are identical. This completes the proof of the 
theorem. 

It is perhaps not very surprising that there is no distinction between 
observable and totally observable continuous-time time-invariant linear 
systems. It is important to point out, however, that for both time-varying and 
time-invariant discrete-time linear systems, total observability is in general much 
stronger than (complete) observability. 

4.2 Observability of Discrete-Time Linear Systems 

We now consider discrete-time linear systems. Let Y be a discrete-time linear 
system with the state-space description 

Analogous to the continuous-time case, Y is said to have the observability 
property on a discrete time-interval { I ,  . . . , m}, if any pair of input-output 
sequences (uk,  uk) ,  k = l ,  . . . , rn, uniquely determine an initial state x,; or 
equivalently, 

ck@klxl=o 9 (4.6) 

k = 1, . . . , rn, if and only if x, = 0, where @,, = I and @ k l =  . . . A,  for k > I 
(Exercise 4.5). Hence, it is clear that if Y has the observability property on 
(1, . . . , m} it has the observability property on (1, . . . , r }  for any r2rn.  For this 
reason the definitions for observability and total observability analogous to 
those in the continuous-time setting can be slightly modified. 
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Definition 4.3 A linear system .4" with a discrete-time state-space description 
(4.5) is said to be observable at an initial time 1 if there exists an m > l  such that 
whenever (4.6) is satisfied for k=l,  . . . , m we must have x,=O. It is said to be 
completely observable or simply Observable if it is observable at every initial time 1. 

Definition 4.4 A linear system Y described by (4.5) is said to be totally 
observable at an initial time I ,  if whenever (4.6) is satisfied for k = 1 and 1 + 1, we 
must have x,=O. It is said to be totally observable if it is totally observable at 
every initial time 1. 

To imitate the continuous setting, we again introduce an analogous matrix 
m 

L,= 2 @'kT1C;CkOkl 
k = I +  1 

and obtain an observability criterion. 

(4.7) 

Theorem 4.3 A linear system 9' with a discrete-time state-space description 
given by (4.5) is observable at an initial time 1 ifand only ifthere is an m > 1 such that 
L, is nonsingular. 

Since the proof of this theorem is similar to that of Theorem 4.1, we leave it as 
an exercise for the reader (Exercise 4.6). For time-invariant linear systems where 
A, = A and Ck = C are n x n and q x n matrices, respectively, we have a more 
useful observability criterion. 

Theorem 4.4 
and only i f the  observability matrix NCA dejined by (4.4) has rank n. 

We again let the reader supply a proof for this result (Exercise 4.7). Since total 
observability is defined by two time-steps, we expect it to be characterized 
differently. This is shown in the following theorem. 

A time-invariant (discrete-time) linear system 9' is observable if 

Theorem 4.5 
able i f  and only if the 2q x n matrix 

A time-invariant (discrete-time) linear system Y is totally observ- 

has rank n. 

We call TcA the total observability matrix of the discrete-time system. As a 
consequence of this theorem, we note that a discrete-time linear system that has 
the number of rows in its observation matrix less than half of the order of its 
system matrix is never totally observable. The proof of the above theorem 
follows from the definition of total observability (Exercise 4.8). 
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For example, if the system and observation matrices are, respectively, 

have ranks 3 and 2 respectively, so that the corresponding discrete-time linear 
system is completely but not totally observable. 

4.3 Duality of Linear Systems 

An interesting resemblance between a completely controllable time-invariant 
linear system and a completely observable one (either continuous- or discrete- 
time) is that they have very similar characterizations in terms of the control- 
lability matrix MdB and the observability matrix N C d ,  respectively. In fact, the 
two continuous-time linear systems 

i = A x + B u  

v = CX + DU and 

f=  ATx + CTd 

i 7 = B T x + D d ,  
Pc : 

where A ,  B, and C are constant matrices, are “dual” to each other in the sense 
that the controllability matrix of Yc is the transpose of the observability matrix 
of p,, and the observability matrix of Yc is the transpose of the controllability 
matrix of gc. The same duality statement holds for the two discrete-time linear 
systems 

Xk+l=ATXk+CTiik 

f i k  = BTXk + bdk . 
9, : 

Hence, we obtain the following duality phenomenon by an immediate appli- 
cation of Theorems 3.4 and 4.2. 
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Theorem 4.6 The two continuous-time linear systems 9, and 9, described above 
are dual to each other in the sense that 9, is coinpletely controllable ifand only $9, 
is completely observable, and 9, is completely observable if and only if 9, is 
completely controllable. The same statement holds for the pair of discrete-time 
linear systems .4”d and t p d .  

The formulation of a “dual system” for the time-varying setting is more 
complicated. We first need the following result. 

Lemma 4.1 
respectively. Then YT(s, t )  = @(t, s). 

Let @(t,  s)  and Y(t ,  s )  be the transition matrices ofA(t)  and - A T ( t )  

To prove this result, we first differentiate the identity Y ( t ,  s) Y(s, t )  = I with 
respect to t and obtain 

‘YI( t ,  s) Y(s t)+Y(t, s ) Y 2 ( s ,  t)=O , 

where the subscripts 1 and 2 indicate the partial derivatives with respect to the 
first and second variables. Hence, 

- A T ( t ) Y ( t ,  s )Y(s ,  t ) + Y ( t ,  s)Y,(s, t ) = O ,  

Y2(s, t)=Y(s, t)AT(t)  

or 

and the lemma follows by taking the transpose of both sides of this identity. 
We are now ready to formulate the dual time-varying systems. Let 

1 = A ( t ) x  + B(t )u  
and 

u = C( t )x  + D(t )u  

f = - AT(t )x  + CT(t)rl 

f i=BT( t )x+D( t ) r l  . 

YC : 

P,, : 

Then we have the following duality result. 

Theorem 4.7 Yc is controllable with a universal time-interval ( to ,  t*), where 
t* >to,  ifand only ift?, has the observability property on (toLt*). Also, 9, has the 
observability property on ( to ,  t l ) ,  where t ,  > to ,  ifand only i f 9 ,  is controllable with 
(to,  t l )  as a universal time-interval. 

The proof of this result follows from Theorems 3.2 and 4.1 by applying 
Lemma 4.1 and relating the matrix 
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to the P,. matrix 

1* S y T ( t $  to )B( t )BT( t )y ( t ,  to)dt 
l0 

of the system (Exercise 4.9). 
The negative sign in front of A T ( t )  in the state-space description of pc does 

not cause inconsistency in the event that A ,  B, and C are constant matrices. The 
reason is that the matrices 

have the same ranks as MAB and Ncn, respectively. 

4.4 Dual Time-Varying Discrete-Time Linear Systems 

For discrete-time linear systems, we do not need the negative sign jn formulating 
the dual systems. We require, however, that the matrices are nonsingular for 
k = 1, . . . , 1* - 1, instead (Theorems 3.6 and 7). Consider 

9d:{ X k + l = A k X k + B k u k  
and 

uk = C k X ,  + Dk Uk 

xk+ 1 = ( A ;  ' ) T X k  + C:+ 1 f i k  i i j k = ~ : - , ~ k + ~ k i i k  . 
Pd : 

The following duality statement can be obtained by using the character- 
ization matrices R,* and L, (Exercise 4.10). 

Theorem 4.8. Let c y d  and p d  be the time-varying systems described above and 
suppose that A,, . . . , A,*- are nonsingular. Then Yd is completely controllable 
with a universal discrete time-interval { I ,  . . . , I * }  if and only if p d  has the 
observability property on { l ,  . . . , I * } .  Also, Yd has the observability property on a 
discrete time-interval (1, . . . , m} if and only if P d  is completely controllable with 
{ 1, . . . , m> as a universal time-interval. 

We remark that in the special case where A,= . . . = A , * _ , = A  is non- 
singular, then Theorem 4.8 reduces to the last statement of Theorem 4.6 
(Exercise 4.13). 



34 4. Observability and Dual Systems 

Exercises 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 
4.7 
4.8 

4.9 
4.10 
4.1 1 

4.12 

Let the system and observation matrices of a continuous-time linear 
system be 

[: -3 and [l  l - l t - l I ]  , 

respectively. Verify that this system is completely observable but not 
totally observable at any initial time less than 1. 
In the above exercise, if the observation matrix is now changed to 
[l 1 + It - 111, then verify that the new system is totally observable at any 
initial time to where Os to < 1 but is not even observable at any initial time 

Find all values of a and b for which the linear systems with input-output 
relations given by u" - u' + u = au' + bu is observable. 
Let 

to> 1. 

A = [ :  :] and C = [ a  b]. 

Find P, and NCA.  Compare the observability criteria in terms of these two 
matrices by showing that the same values of a and b are determined in 
each case. 
Prove that the linear system described in (4.5) has the observability 
property on the discrete time-interval { I ,  . . . , m} if and only if x,=O 
whenever (4.6) holds for k = l ,  . . . , m. 
Provide a proof for Theorem 4.3 by imitating that of Theorem 4.1. 
Prove Theorem 4.4. 
Prove that Theorem 4.5 is a direct consequence of the definition of total 
observability for discrete-time systems. 
Supply the detail of the proof of Theorem 4.7. 
Prove Theorem 4.8. 
Let 

r 1 

A = [ - !  "J and C=[o l b l  c ] .  

Determine all values of a, b and c for which the corresponding discrete- 
time linear system is completely observable and those values for which it is 
totally observable. 
Consider a discrete-time linear system with input-output relations given 
by u k  + +auk + + buk + + u k  = uk + + u k .  Determine all values of a and b 
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for which the system is completely observable. Give the input-output 
relations for its dual system and determine all values of a and b for which 
the dual system is completely observable. 
Let A be a nonsingular constant square matrix. Show that the two 
(continuous- or discrete-time) linear systems with the same constant 
observation matrix C and system matrices A and K' ,  respectively, are 
both observable if one of them is observable. The analogous statement 
holds for the controllability. 

4.13 



5. Time-Invariant Linear Systems 

Time-invariant systems have many important properties which are useful in 
applications that time-varying systems do not possess. This chapter will be 
devoted to the study of some of their structural properties. In particular, the 
relationship between their state-space descriptions and transfer functions ob- 
tained by using Laplace or z-transforms will be discussed. 

5.1 Preliminary Remarks 

Before we concentrate on time-invariant systems, three items which are also 
valid for time-varying systems shoud be noted. These remarks will apply to both 
continuous- and discrete-time descriptions, although we only consider the 
continuous-time setting. The discrete-time analog is left as an exercise for the 
reader (Exercise 5.4). 

Remark 5.1 The results on complete controllability and observability obtain- 
ed in the previous two chapters seem to depend on the state-space descriptions of 
the linear systems; namely, on the matrices A ( t ) ,  B( t ) ,  and C(t).  We note, however, 
that this dependence can be eliminated among the class of all state-space 
descriptions with the same cardinalities in state variables and input and output 
components, as long as the state vectors are nonsingular transformations of one 
another. More precisely, if G is any nonsingular constant matrix and the state 
vector x is changed to y by y = G -  ' x, then the matrices A ( t ) ,  B(t), and C ( t )  are 
automatically changed to A(t)  = G -  ' A(t )G,  j ( t )  = G - ' B ( t ) ,  and C(t) = CG, 
respectively. Hence, it is easy to see that if the transition matrix of the original 
state-space description is O(t, s), then the transition matrix of the transformed 
description can be written as & ( f ,  s) = G- 'O ( t ,  s)G, and it follows that the 
matrices 0,. and p,, which are used to give controllability and observability 
criteria for the transformed description as Qr* and P, are for the original 
description, have the same ranks as Q,. and P , ,  respectively, so that Theorems 3.2 
and 4.1 tell us that controllability and observability properties are preserved 
(Exercise 5.1). 

Remark 5.2 The transfer matrix D ( t )  is certainly not useful in the study of 
controllability, and does not appear even in our discussion of observability. In 
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fact, there is no loss of generality in assuming that D ( t )  is zero and this we will do 
in this chapter (Exercise 5.2). 

Remark 5.3 On the other hand the control equation in the state-space 
description can be slightly extended to include a vector-valued function, namely 

f = A ( t ) x  + B(t)u  + f ( t )  , (5.1) 

wheref(t) is a fixed n x 1 matrix with piecewise continuous (or more generally 
bounded measurable) functions in all entries, without changing the con- 
trollability and observability properties (Exercise 5.3). 

5.2 The Kalman Canonical Decomposition 

We are now ready to study time-invariant linear systems. Let A, B, and C be 
constant n x n, n x p and 4 x n matrices, respectively. These are of course the 
corresponding system, control, and observation matrices of the state-space 
descriptions of the linear system. Also, let the controllability and observability 
matrices be 

M A , =  [ B  A B . .  . A ” - ’ B ]  and 

respectively. Recall that for both continuous- and discrete-time descriptions, 
these two matrices characterize complete controllability and observability in 
terms of the fullness of their ranks. Hence, if a system is not completely 
controllable or observable, it is natural to work with the matrices MAB and N,, 
to obtain a partition of some linear combination, which we will call “mixing”, of 
the state variables into subsystems that have the appropriate complete control- 
lability and observability properties. In addition, since only these two matrices 
will be considered, the following discussion will hold both for continuous- and 
discrete-time state-space descriptions. 

Let SPIV,, denote the algebraic span of the column vectors of MAB and 
sp N:, that of the column vectors of N;,. Next, let n2 be the dimension of 
sp MAB sp N:,. It will be seen that n, is the number of state-variables, after 
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---7/- input 

Fig. 5.1. Linear System .Y 

some “mixing”, that constitute a largest subsystem Y; which is both completely 
controllable and observ-able. Also set 

n1 = dim(sp MAE) - n2 , 

n4 = dim(sp NCA) - n2 , and 

n 3 = n - n n , - n 2 - n 4  . 

Clearly, n ,  , . . . , n4 are all non-negative integers. It is believable that n ,  is the 
dimension of a subsystem Yl which is completely .controllable but has zero 
output, and n4 the number of state variables constituting a subsystem 9, which 
has zero control matrix but is observable. This is usually called the Kalman 
Canonical Decomposition (Fig. 5.1). However, to the best of our knowledge, there 
is no complete proof in the literature that 9, is completely controllable and .Y4 is 
observable. Further discussion on this topic is delayed to Chap. 10. 

Let { e l , .  . . , e , }  be an orthonormal basis of 52” so constructed that 
{ e l , .  . . , en l+n2}  is a basis of SPMAB, { e n l + , ,  . . . , e n l + n 2 }  a basis of 

of sp N Z A .  We also consider the corresponding unitary matrix 
spMABnspN~A? and { e n , + l , . . ’ , e n , + n , ~ e n , + n , + n , + l ~ . ” , e n }  a basis 

U = [ e ,  . . . en]  

whose jth column is e j .  This matrix can be considered as a nonsingular 
transformation that describes the first stage in “mixing” of the state variables 
briefly discussed above and in more detail later. This “mixing” procedure will put 
the transformed system matrix in the desired decomposable form. However, we 
will see later that this is not sufficient to ensure that the uncoupled subsystems 
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have the desired controllability or observability properties. A second stage is 
required. Anyway, at present, the state vector x(xk for the corresponding 
discrete-time setting) is transformed to a state vector y (yk for the discrete-time 
setting) defined by 

y =  u - ' x = u T x  . 

Hence, the corresponding transformed system, control, and observation matrices 
are - 

A = U T A U ,  = U T B ,  and = CU , 
respectively. 

We now collect some important consequences resulting from this trans- 
formation. Let us first recall a terminology from linear algebra: A subspace W of 
R" is called an invariant subspace of R" under a transformation L if Lx is in W for 
all x in W. In the following, we will identify certain invariant subspaces under the 
transformations A and A T .  For convenience, we denote the algebraic spans of 

{e,,, + ,,, + + , , . . . , e,,} by V ,  , V , ,  V , ,  and V4 respectively. Hence, we have 
{ e 1 , . . . 3 e n l }  { e n I + l , . . . ,  e n l + n l ) ,  { e n l + n z + l , . . . ,  e n , + , , , + , , , ) ,  and 

Lemma 5.1 
formation A,  while V4 and sp NEA are invariant subspaces under A T .  

We only verify the first half and leave the second half as an exercise for the 
reader (Exercise 5.5). If x is in sp MA,, then x is a linear combination of 
the columns of B, A B ,  . . . , A R - ' B ,  so that A x  is a linear combination of the 
columns of A B , .  . . , A"B. Hence, by the Cayley-Hamilton theorem, A x  is a 
linear combination of the columns of B, AB,  . . . , A"-' B again. That is, sp M A ,  

is an invariant subspace of R" under A. By the same argument, we see that sp NEA 
is an invariant subspace under A T .  Now let x be in V ,  . Then x is in sp MAB so 
that A x  is also in sp MA, = VI @ V , .  That is, A x  = x1 + x, where x1 is in V ,  and 
x, is in V , .  Since V ,  is a subspace of sp NEAA, A T x ,  is also in sp NEA. Hence, using 
the orthogonality between the vectors in V,  and V, ,  and the orthogonality 
between those in V,  and sp NEA = V, @ V4 consecutively, we have 

V ,  and spMA, are invariant subspaces of R" under the trans- 

x;xz = (XI  + X2)TX2 

= ( A x ) ~ x ,  = x T A T x ,  = 0 

That is, x, = 0, or A x  = x, which is in V , .  This shows that V ,  is an invariant 
subspace under A .  

We next relate the images of e j  under A in terms of the basis { e i } ,  using the 
coefficients from the entries of 2. Write A"= [ G i j ] ,  1 I i , j  I n. We have 
the following: 
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Lemma 5.2 For each j = 1, . . . , n, 

Aej  = G I j e ,  + . . . + Gnje, . (5.2) 

The proof of this result is immediate from the identity AU = UA" 
[e ,  . . . e , ] i ,  since the vector on the left-hand side of (5.2) is thejth column 

' AU and the vector on the right-hand side of (5.2) is the ,jth column of 

We now return to the transformation y = U T x  and show that the trans- 
[ e ,  . . . e,]A.  

formed state-space description has the desired decomposable form. Writing 

y ,  } n ,  components 
y 2  } n2 components 
y 3  } n3 components 

y = :  y 4  1 } n4 components 

we can state the following decomposition result. Only the notation of a 
continuous-time system is used, and as usual, an extra subscript is required for 
the corresponding discrete-time system. 

Theorem 5.1 Every rime-invariant linear system ,Y whose transfer matrix D in its 
state-space description vanishes has a (nonsingular) unitary transformation 
y = U T x  such that the transformed system, control, and observation matrices are of 
the form 

Consequently, the transformed state-space description 

u = c y  

of Y can be decomposed into ,four subsystems: 

31 = A l l y l  + B l U + f ,  
v=Oy,  = o  9, : 
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withf l  A12y2 + A13y3 + A14y4 1 

s i 2  = A22Y2 + B2u + f 2  i = c , y ,  
.Y2 : 

with f 2  = A 2 4 ~ 4  9 

Y 3  = A33Y3 + ou + f 3  = A33Y3 + f 3  i v = O y 3 = 0  

with f 3  = A3,y4, and 

Y3 : 

Y4 = A44Y4 + ou = A44Y4 

v = C4Y4 
.Sp, : 

where .Y1 has zero (or no) output for observation, Y2 is both completely controllable 
and observable, Y3 is not influenced by any control u and has no output, und.Y4 i s  
not injuenced by any control function. 

I t  is important to note that although the combined (Yl and Y,) system with 
system matrix 

is completely controllable, the subsystem Y ,  may not be controllable. This can 
be seen from the following example. Consider 

1 1 0 0  

A = [  (5.3) 

As it stands, this is already in the desired decomposed form with n ,  = n2 = n3 
= n4 = 1. The subsystem 9, is clearly both completely controllable and 
observable, and the combined subsystem of Yl and Y2 with 

WWW.GHAEM.INFO
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and control matrix [0 
lability matrix is 

I l T  is also completely controllable, since the control- 

[: :I (5.4) 

which is of full rank. However, the subsystem 9, is not controllable! Moreover, 
no unitary transformation can make 9, controllable (Exercise 5.6). Therefore, in 
general, a nonsingular (non-unitary) transformation is necessary. In this 
example, the transformation 

r i  1 o 01 
0 1 0 0  

0 0 0 1  
G = I o  0 1 (5.5) 

can do the job. We leave the detail as an exercise (Exercise 5.7). 
We also point out that the dimensions n , ,  . . . , n4 of the subsystems in the 

above theorem are independent of any nonsingular transformation (Exercise 
5.8). For unitary transformations, this is clear. In fact, if W is any unitary n x n 
matrix and Â  = WTA W, 6 = W T B ,  and e = C W, then the dimensions of the 
subspaces sp M A i n  sp N r A ,  sp MA,, and sp N$i of R” are clearly n,, n ,  + n,, 
and n4 + n,, respectively. In addition, we note that the vectors f ,  , f , ,  f 3  in the 
state-space descriptions of the subsystems do not change the controllability and 
observability properties as discussed in Remark 5.3, and the transfer matrix D 
does not play any role in this discussion (Remark 5.2).  For convenience D was 
assumed to be the zero matrix in the above theorem. I t  is also worth mentioning 
that the nonsingular transformation U does not change the controllability and 
observability properties of the original state-space descriptions as observed in 
Remark 5.1. 

To verify the structure of the matrix A’ in the statement of Theorem 5.1, note 
that for 1 5.j I n , ,  Aej€ V ,  by Lemma 5.1. Hence, comparing with the ex- 
pression(5.2)in Lemma 5.2, we see that 5j = Ofor i = n ,  + I ,  . . . ,n  (1  4 jl n,).  
This shows that the first n ,  columns of A have the block structure described in 
the theorem. To verify the structure of the second column block, we consider 
n ,  + 1 2 j I n ,  + n2 and note that Aej is in sp MA, = VI @ V2 from Lemma 5.1, 
so that again comparing with expression (5.2), we see that Gij = 0 for i = n ,  + n, 
+ 1,. . . , n .  For n ,  + n ,  + 1 IjI n ,  + n ,  +n, ,  ej is in V ,  and hence is ortho- 
gonal to any y in V ,  @ V4 = sp NCTA. But since sp N EA is an invariant subspace of 
R” under A T ,  we see that ATy is also orthogonal to e j ,  so that ( A C ~ ) ~ ~  = eTATy 
= 0, and Aej is in the orthogonal complement of sp NEAa. This shows that Aej is 
in V ,  0 V,, which yields the zero structure of the third column block of A’. 

The zero structures of and e again follow from orthogonality. Indeed, since 
the columns of B are in V ,  0 V,, they are orthogonal to V ,  and V4 so that the 
identity = U T B  = [el . . . e , , lTB yields the described structure of E. Also, since 
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the columns of CTare in V ,  0 V4 and = CU, the first and third column blocks 
of must be zero. To verify the complete controllability and observability of the 
subsystem Y2 in Theorem 5.1, one simply checks that the controllability and 
observability matrices are of full rank. In fact, i t  can also be shown that the 
combined Y1 and 9, subsystem is completely controllable and the combined .Y2 
and 9, subsystem is observable (Exercise 5.9). 

5.3 Transfer Functions 

Our next goal is to relate the study of state-space descriptions to that of the 
transfer functions which constitute the main tool in classical control theory. 
Recall that iff(t)  is a vector- (or matrix-) valued function defined on the time 
interval that extends from 0 to + cc such that each component (or entry) off(t) is 
a piecewise continuous (or more generally bounded measurable) function with at 
most exponential growth, then its Laplace transform is defined by 

m 

F ( s )  = (d;pf)(s)  = j e-s'f(t)dt , 
0 

where, as usual, integration is performed entry-wise. This transformation takes 
f ( t )  from the time domain to the frequency s-domain. The most important 
property for our purpose is that it changes an ordinary differential equation into 
an algebraic equation via 

etc. Similarly, the z-transform maps a vector- (or matrix-) valued infinite 
sequence (gk}, k = 0, 1, . . . , to a (perhaps formal) power series defined by 

where z is the complex variable. Again the most important property for our 
purpose is that it changes a difference equation to an algebraic equation via 

etc. It is important to observe that (5.7 and 8) are completely analogous. Hence, it 
is sufficient to consider the continuous-time setting. For convenience, we will 
also assume that the initial state is 0. Hence, taking the Laplace transform of each 
term in the state-space description 

v = c x  
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where A ,  B, C are of course constant n x n, n x p and q x n matrices, we have 

S X  = A X  + B U  

v=cx (5.9) 

which yields the input-output relationship 

v= H ( s ) U  , (5.10) 

where H ( s ) ,  called the trun.qer,function of the linear system, is defined by 

H ( s )  = C(sl - A ) -  B . 

Here, it is clear that, at least for large values of s, s l  - A is invertible, and its 
inverse is an analytic function of s and hence can be continued analytically to the 
entire complex s-plane with the exception of at most n poles which are 
introduced by the zeros of the nth degree polynomial det(sZ - A ) .  In fact, if we use 
the notation 

(SI - A)* 

to denote the n x n matrix whose (i,j)th entry is (-  1)"jdet Aij(s), where Aij(s) is 
the (M - I )  x (n  - I) sub-matrix of s l  - A obtained by deleting the jth row and ith 
column, we have 

C ( S ~  - A ) *  B 
H ( s )  = _____ . 

det (SI - A )  
(5.1 1) 

Here, the numerator is a q x p matrix, each of whose entries is a polynomial in s 
of degree at most n - 1, and the denominator is a (scalar-valued) nth degree 
polynomial with leading coefficient 1. It is possible that a zero of the denomi- 
nator cancels with a common zero of the numerator. 

5.4 Pole-Zero Cancellation of Transfer Functions 

An important problem in linear system theory is to obtain a state-space 
description of the linear system from its transfer function H(s ) ,  so that the state 
vector has the lowest dimension. This is called the problem of minimal realization 
(Sect. 10.5). To achieve a minimal realization it is important to reduce the 
denominator in (5.1 1) to its lowest degree. This reduction is called pole-zero 
cancellation. 

Definition 5.1 The transfer function H(s )  is said to have no pole-zero cancel- 
lation if none of the zeros of the denominator det(s1- A )  in (5.1 1) disappears by 
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all possible cancellations with the numerator, although there might be some 
reduction in the orders of these zeros. 

It is quite possible to have a pole-zero cancellation as can be seen in the 
following example. Consider 

(5.12) 

Then the transfer function of the state-space description defined by these 
matrices is 

(s - 1 ) - - H ( s ) =  ~ 

(s+3)(s-l)  ’ 

det [ -11 
(s - 1 ) - - H ( s ) =  ~ 

[ s+2  (s+3)(s-l)  ’ 

det . -11 
L -3  SJ  

Hence, the zero s = 1 in the denominator [i.e. the possible “pole” of N ( s ) ]  cancels 
with the numerator. This pole-zero cancellation makes H(s )  analytic on the 
right-half complex s-plane as well as on the imaginary axis, which is usually used 
as a test for stability (Chap. 6). It will be seen in Chap. 6, however, that this system 
is not state-stable although it is input-output stable. Hence, an important 
information on instability, namely that s = 1 being an eigeavalue of A ,  is lost. 
This does not occur for completely controllable and observable linear systems. 

Theorem 5.2 The transfer junction H ( s )  of‘ the state-space description 

f =  A x + B u  

u = c x  

of a time-invariant linear system which is both completely controllable and 
observable has no pole-zero cancellation in the expression (5.11). 

The proof of this theorem depends on some properties of minimum poly- 
nomials, for which we refer the reader to a book on linear algebra; see, for 
example, Nering (1963). Recall that the minim’um polynomial qm(s)  of the n x n 
system matrix A is the lowest degree polynomial with leading coefficient 1, such 
that q m ( A )  = 0. Hence, m 2 n and, in fact, if d(s) is the greatest common divisor, 
again with leading coefficient 1, of all the entries of (sl- A ) * ,  then 

(5.1 3) 

Let us define a matrix F(s)  by (SI - A)* = d(s)F(s).  Then we have d(s) (SI - A ) F ( s )  
= (SI - A ) ( s l -  A)* = det(s1- A ) I ,  so that 

qm(s) l  = (SI - A )  F ( s )  , (5.14) 
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and taking the determinant of both sides yields 

qk(s) = det(sZ - A )  det F(s)  . 

This shows the important property that the zeros of the characteristic poly- 
nomial det(s1- A )  are also the zeros of the minimum polynomial qm(s). On the 
other hand, we have 

C(SI - A ) * B  d(s)CF(s)B - CF(s)B -- - H ( s )  = - 
det(s1-A) d(s)qm(s) q m ( s )  

by using (5.1 1,13),  and the definition of F(s). Hence, to show that there is no pole- 
zero cancellation, it is sufficient to show that if qm(s*) = 0 then CF(s* )B  is not the 
zero q x p matrix. 

To prove this assertion, we need more information on F(s) .  Write 

qm(s) = sm - a1sm-1 - . . .  - a , .  

It can be shown (Exercise 5.12) that 

(5.15) 

Hence, replacing s and t by the matrices S I  and A,  respectively, and noting that 
qm(A)  = 0, we have 

m -  1 

q,(s)I = qm(sI) = ( S I  - A )  1 ( A k  - a,  A k  - - . . . - a k l ) s " - k - l  . 
k = O  

This together with (5.14) gives 

m -  1 
- F ( s ) =  ( A k - q A k - 1 -  . . .  

k = O  
U k  I ) sm ~ - 1 . (5.16) 

As a consequence of (5.16), we observe that F(s)  commutes with any power 
of A. i.e. 

F(s)Ak = AkF(s),  k = 1, 2, . . . . (5.17) 

Assume, on the contrary, that both qm(s*)  = 0 and C F ( s * ) B  = 0. Then by (5.14), 
we have 

(s*I- A ) F ( s * )  = q,(s*)Z = 0 

so that A F ( s * )  = s*F(s*),and A 2 F ( s * )  = s*AF(s*) = s*'F(s*), etc. Hence, from 
(5.17) we have 

A k F ( s * )  = F(s* )Ak  = s * ~ F ( s * ) ,  k = 1,2, . . . . (5.18) 
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One consequence is that 

C A k F ( s * ) B  = s * ~ [ C F ( S * ) B ]  = 0, k = 0,1, . . . , 

or NCA(F(s*)B)=O,  where N, ,  is the observability matrix. Since the linear 
system is observable, the column rank of N,, is full, and this implies that 
F(s* )B  = 0. We can now apply (5.17) to obtain 

k = 0, 1, . . . , F ( s * ) A k B  = A k F ( s * ) B  = 0, 

or F(s*)M,, = 0, where M A ,  is the controllability matrix. Since the linear system 
is completely controllable, the rank of M A ,  is full, so that F ( s * )  = 0. If s* = 0, 
then (5.16) gives 

A"- l  - a , A m p 2 -  . . . - a , _ , I = O  

which contradicts that the minimum polynomial q,(s) is of degree rn, and if 
s* # 0, then again by (5.16), 

p ( A )  = 0 where 

is a polynomial of degree m-  1, and we also arrive at the same contradiction. 
This completes the proof of the theorem. 

Exercises 

5.1 

5.2 

5.3 

5.4 
5.5 

5.6 

5.7 

Give some examples to convince yourself of the statement made in 
Remark 5.1. Then prove that this statement holds in general. 
If a state-space description of a continuous-time linear system with zero 
transfer matrix is completely controllable, show that the same description 
with a nonzero transfer matrix D(r)  is also completely controllable. Repeat 
the same problem for observability. 
Show that an additional free vector f ( t )  in (5.1) does not change the 
controllability and observability of the linear system. 
(Hint:  Return to the definitions). 
Formulate and justify Remarks 1,2, and 3 for discrete-time linear systems. 
Complete the proof of Lemma 5.1 by showing that V ,  is an invariant 
subspace of R" under A T .  
In the example described by (5.3), show that no unitary transformation W 
can make .V; controllable without changing the desired decomposed form. 
Verify: that the subsystem Y2 in the example described by (5.3) is 
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completely controllable and observable; that the combined subsystem of 
9, and is completely controllable; that the combined subsystem 9‘, 
and Y4 is observable; that the subsystem Y4 is observable; but that the 
subsystem .Yl is not controllable. Also, verify that if the transformation 
G- is used, where G is given by (5 .5 ) ,  then the transformed subsystem Yl 
is now completely controllable while .Yz, .Y3, and Y4 remain unchanged. 
Prove that the dimensions n , ,  . . . , n4 of the subsystems in the de- 
composed system (Theorem 5. l ) are invariant under nonsingular 
transformations. 

5.9 Verify that the combined subsystem JY’, and 9, in Theorem 5.1 is 
completely controllable, and the combined subsystem Y‘, and <Y4 is 
observable. Complete the proof of Theorem 5.1 by verifying that the 
appropriate controllability and observability matrices are of full rank. 

5.10 Verify the z-transform property (5.8) and generalize to Z { g k + l } .  
5.1 I Verify that there is a pole-zero cancellation in the example (5.12), and 

determine the ranks of the controllability and observability matrices. 
5.12 Derive the formula given by (5.15). 
5.13 (a) If 

5.8 

PI=[ :  e ]  and .=[:I, 
verify that the system is not controllable while the two subsystems .Y, and 
Y ,  arc completely controllable. 
(b) I f  

verify that the system and its subsystem Y2 are both completely control- 
lable while :f1 is not. 



6. Stability 

The origin of the notion of stability dates back to the 1893 paper of A. M. 
Lyapunov, entitled “Probleme general de la stabilite du mouvement”. In this 
chapter we only discuss the stability of linear systems. As usual, we begin with the 
continuous-time setting. 

6.1 Free Systems and Equilibrium Points 

A system with zero input is called a.free system. Hence, a free linear system can be 
described by 

i = A ( t ) x  , (6.1) 

where the entries of the n x n system matrix A( t )  will be assumed, as usual, to be 
continuous functions on an interval J that extends to + co. A position x, in R” is 
called an equilibrium point (or state) of the system described by (6.1) if the initial- 
value problem 

X = A ( t ) x ,  t 2 t o  

x(to)= xe 

has the unique solution x(t)=x, for all t2  to .  This, of course, means that with x, 
as the initial state there is absolutely no movement at all. For instance, any 
position [a  O I T ,  where a is arbitrarily chosen, is an equilibrium point of the free 
system 

? -  -- m /4 3 - J  ’ 

More generally, if @(t, t o )  denotes the transition matrix of (6.1), then x, is an 
equilibrium point if and only if 

CZ-@(t ,  t,)lx,=O / 

for all t 2 to.  Hence, if the matrix Z - @ ( t ,  t o )  is nonsingular for some t > t o ,  then 
the only equilibrium point is the origin. 



50 6 .  Stability 

no resistance or friction 

unstable stable and stable but not 

equilibrium asymptotically stable asymptotically stable 

equilibrium equilibrium 

Fig. 6.1 

It is interesting to study how the state vector behaves if the initial state is near 
but not at an equilibrium point. A ball sitting still on top of a hill will roll away 
when it is disturbed, but if it is slightly perturbed while sitting on the bottom of a 
valley, it will eventually move back to the original equilibrium position. 
However, if there is no resistance, the perturbed ball on the bottom of a 
frictionless valley just oscillates back and forth, but never stays at the bottom. 
These phenomena illustrate the notion of unstable equilibrium, asymptotically 
stable equilibrium, and stable equilibrium in the sense of Lyapunov, respectively 
(Fig. 6.1). 

6.2 State-Stability of Continuous-Time Linear Systems 

In this section, we introduce three related but different types of state-stability. 

Definition 6.1 A free linear system described by (6.1) is said to be stable (in the 
sense ofLyapunou) about an equilibrium point x, (or equivalently, x, is a stable 
equilibrium point of the system) if for any E>O, there exists a S>O, such that 
Ix(t) Txel < E  for all sufficiently large t whenever Ix(t,) = x,Iz < 6 (cf. Exercise 2.6 
for definition of the ‘‘length’’ I I z  and Remark 6.3 below). 

Another termi2ology for stabfity in the sense of Lyapunov is state-stability, 
since it describes the stability of the state vector. 

Definition 6.2 A free linear system is said to be unstable about an equilibrium 
point x, (or x, is an unstable equilibrium point of the system) if it is not stable 
about x,; that is, there exists an E,  > O  such that for every S >O, some initial state 
x ( t , )  and a sequence t k + + m  can be chosen to satisfy Ix(t,)-x,I,<S and 
Ix(t,)-x,12>E0 for all k.  r 

2 ; .4f 3 7 , k , i  7 6 4 1  1 t !  ,I ..“c 

. I  
Definition 6.3 A free linear system is said to be asymptotically stable about an 
equilibrium point x, (or x, is an asymptotically stable equilibrium point of the 
system) if there exists a S > O  such that Ix(t)-xX,12+0 as t + + m  whenever 
Ix(to)-xel2<6. 

I ,  This stability is also called asymptotic state-stability. 
> 
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Clearly, an asymptotically stable equilibrium point is also a stable equilib- 
rium point in the sense of Lyapunov, but the converse is false as illustrated in the 
frictionless valley example. More precisely, the free linear system 

i=[ 0 1  1. 
- 1  0 

hasx,=Oasanequilibriumpoint, andifx(t,)=[6, 6,1T where6?+6:>0, then 
it can be seen that 

x ( t ) =  [S, cos([- t ,)+6, sin(t-t,) -6, sin(t - t ,)+6, cos([- t 0 ) lT  

for all t 2 t o  so that ~ x ( t ) - x , ~ 2 = ~ ~ ( t ) ~ Z = ~ ~ ( t 0 ) ~ 2  for all t (and we could have 
chosen 6 to be the given E), but that x ( t )  clearly does not converge to 0. 

Remark 6.1 Using the translation y = x - x, we may (and will) assume that the 
equilibrium point is 0. The system description is unchanged under this trans- 
lation since 

d 
dt 

j 7 - ( X -  

d 
dt  

=i--@(t, t , )x,  

= A ( t ) x - A ( t ) @ ( t ,  t , )x ,  

= A ( t ) x  - A ( t ) x ,  

= A ( t ) ( x - x , )  = A ( t ) y  

which is the same equation (6.1) that x satisfies. 

Remark 6.2 The restriction of Jx(t,)l,<6 in the definition of asymptotic 
stability can be omitted for free linear systems, since 6x( t )  = @(t, t o )  [ 6 x ( t , ) ]  and 
Ix(t)l,-+O if and only if 6lx(t ) I2+0 as t+ + 00. 
Remark 6.3 If x = [ x ,  . . . x , , ] ~ ,  then 

Ix12=Jx:.+ . . . +xi 

is the actual length of x in R". This generalizes to IF l 2  of a matrix F = [ A j ]  by 
defining 

IFlz=( ;q2 . 

For convenience, we will sometimes drop the subscript 2, so that IxI=(x12 and 
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Theorem 6.1 Let @(t, t o )  be the transition matrix of the free linear system 
described by (6.1). This system is stuhle about 0 ifand only if’ there exists some 
positive constant C, depending only on t o ,  such that 

l@(4 t0) l  I C  (6.2) 

l@(L to) l+O (6.3) 

for all t>t,. I t  is asymptotically stable about 0 i f  and only i f  

as t - r  + m. 

Recall that x ( t ) = @ ( t ,  t , ) x ( t o )  since we have zero control function u. By 
Schwarz’s inequality, we obtain 

Ix(t)I I@(t? t o )  I Ix(t0)l (6.4) 
(Exercise 6.4). Hence, if (6.2) is satisfied, then for a given e>O, we can choose 
6 =c-:/C, so that the system is stable about 0. Furthermore, if(6.3) is satisfied, then 
the above inequality gives jx(t)l-O, so that the system is asymptotically stable 
about 0. 

To see the converse of the first statement, we assume that the system is 
stable about 0 but, on the contrary, (6.2) is not satisfied for any C. That is, there 
is some entry $Ji, , ,  j ,  (t, t o )  in @(t ,  to) ,  I <io , jo  I n ,  that is unbounded, as t - t  + co. 
Let x ( t , ) = [ O  . . . 0 1 0 .  . . 0IT, 1 being placed in the joth entry. Then 
Ix(t)I =I@(t, t o ) x ( ~ o ) l ~ ~ $ J i , , j ~ ( l ,  t o ) (  which is unbounded (cf. Remark 6.2 for 
dropping the requirement Ix(t,)l< d), contradicting the stability assumption. 
The proof of the converse of the second statement is similar (Exercise 6.7). This 
completes the proof of the theorem. 

Let us consider time-invariant systems for the time being and denote by 
j b j =  rj+ isj, ( r j ,  s j  real) j =  1, . . . , k,  the eigenvalues of the n x n constant matrix A 
with multiplicities m , ,  . . . , mk, respectively ( m ,  + . . . +m,=n), so arranged 
that rl  > r , >  . . . > r , .  Now if @(t, 0) is the transition matrix with initial time 
to = 0, its Laplace transform is 

so that 

(Y@) (s) = ( S I  - A ) -  

(SI - A ) *  
- - 

det(sI - A )  

(SI - A)*  - - 
k 
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Since each entry in ( s l-  A)* is a polynomial of degree < n and the denominator 
is of degree=n, we can use partial fractions and obtain 

where Pl j  are n x n constant matrices (with complex entries). Taking the inverse 
Laplace transformation, we have 

Hence, the transition matrix corresponding to a given constant matrix A and 
with initial time to has the following expression: 

This formulation of Q(t ,  t o )  is very useful in the study of stability. For instance, if 
we write r l  = . . . =rp>rp+l  2 . . . 2 r k  ( p 2  1) and set r=r l ,  then (6.5) yields 

where o(1) (which reads “small ‘oh’ one”) is a so-called Landau notation that 
denotes the error term that tends to 0 as t +  + 00. The following result is a simple 
consequence of this estimate and Theorem 6.1 (Exercises 6.8 and 10). 

Theorem 6.2 Let the time-invariant system matrix A in (6.1) be an n x n matrix 
with eigenvalues L j .  Then the corresponding continuous-time free linear system 
is asymptotically stable about 0 if and only $Re { l j }  < O  for all j .  It  is stable about 
0 in the sense of Lyapunov if and only if Re { l j }  5 0 for all j ,  and ,for each j with 
Re { I v j }  =0, l j  i s  a simple eigenvalue of A. 

Remark 6.4 The result in the above theorem does not apply to time-varying 
systems. For example, if 

the eigenvalues of A( t )  are E, = - 1 and - 3 (independent of t )  which of course 
have negative real parts. However, with the initial state x(O)= [S dIT, 6 >0, the 
state vector becomes 

1 (3e - ” - 2e 7f) 6 
(2e‘ - e 31 )6 

x( t )= 
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so that Jx(t) l+co as t+ + co for any 6>0, no matter how small. That is, this 
system is even unstable about 0. 

Remark 6.5 Let the time-invariant system described in Theorem 6.2 be 
asymptotically stable. Then all the eigenvalues A j  of the system matrix A have 
negative real parts. Choose any p that satisfies 

O <  p < min( - Re { A j } )  . 

Then the estimate (6.6) gives 

l@(t, t o ) ]  <epP('-'O) 

for all large values o f t  (Exercise 6.9). In particular, if x is the state vector with 
initial state x ( t , ) ,  then x satisfies 

Ix(t)l I Ix(tO)le-P(rpro) . (6.7) 

This shows that not only does Ix(t)l tend to 0, it tends to 0 exponentially fast. 

Time-varying systems, however, do not necessarily have this property as can 
be seen from the example i ( t )  = - t -  x ( t )  where t 2 t ,  >O, since the solution of 
this initial-value problem is 

x ( t ) = x ( t , ) ( t , t  - 1 )  

which tends to zero as t+ + co, but certainly does not tend to zero exponentially 
fast as (6.7). So for time-varying systems, we need the following finer stability 
classification. 

Definition 6.4 A free linear system described by (6.1) is said to be exponentially 
stable about the equilibrium point 0, if there exists a positive constant p such that 
the state vector x ( t )  satisfies the inequality (6.7) for all sufficiently large values oft 
and any initial state x ( t , ) .  (Note that in view of Remark 6.2, we have no longer 
required Ix(t,)l< 6.) 

The following result characterizes all such free linear systems. 

Theorem 6.3 Let IA(t)l I M,< co for all t > t , .  Then the corresponding free 
linear system is exponentially stable about the equilibrium point 0 if and only if 
there exists a positive constant M ,  such that the transition matrix @( t ,  s )  of A with 
initial time s 2 t ,  satisjes 

for all t > s > t , .  

One direction of this theorem is intuitively clear since state vectors and 
the transition matrix are intimately related. In fact, thejth column @ j =  @j( t ,  s) of 
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@(t,  s) is the state vector x ( t )  with initial state x(s)= [O . . . 0 1 0 . . . OIT, 1 being 
placed at thejth component. Hence, if the system is exponentially stable about 0, 
then p > O  exists such that 

for all sufficiently large values of t ,  and j =  1, . . . , n. This gives 

t f f 

S S S 

for all t 2 s 2 to. To prove the converse, assume that @(t,  s) satisfies (6.8). Our first 
observation is that l@(t, s)I is uniformly bounded for all t and s with t 2 s. Indeed, 
if t 2 s, we have 

I@@, s) - I I = - @(w, s) dw 1 i:w 
S 

where Schwarz’s inequality and the inequality in Exercise 6.6 have been used, 
and hence an application of the triangle inequality (Exercise 6.5) gives 

I@(t, s)I < 111 + M ,  M I  = n”2+Mo MI:= M ,  , 
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Hence, whenever ( t - s ) 2 2 M 1  M , ,  we have 

(6.9) 1 l@(h s ) l r z -  . 

Now, starting at to ,  if t > t ,  we can choose the largest nonnegative integer k 
satisfying t , + k ( 2 M l  M , ) < t  so that k > [ ( t - t , ) / 2 M l M , ] -  1 ,  and using the 
notation 

we obtain 

by defining r=(ln 2) / (2M1 M , ) .  Here, we have used Schwarz's inequality and 
inequality (6.9) ( k  - 1) and k times, respectively, and of course, the last inequality 
follows from the definition of k .  Hence, again by using Schwarz's inequaltiy, we 
obtain 

Ix(t)I=l@(t, t , , )x(t , , ) l<[@(t,  t,)l Ix(t,)l ~ 2 e - ~ ( ~ - ' " )  Ix(t0)l 

which gives (6.7) for all large values o f t  by choosing any p with O < p < r .  This 
completes the proof of the theorem. 

6.3 State-Stability of Discrete-Time Linear Systems 

We now turn to the study of the discrete-time setting. To do so, we need a result 
from linear algebra. Recall that any n x n constant matrix A is similar to a Jordan 
canonical form J ;  that is A = PJP-'  for some nonsingular matrix P. The reader 
probably remembers that J has at most two nonzero diagonals; namely, the main 
diagonal that consists of all eigenvalues of A listed according to their multi- 
plicities, and the one above the main diagonal that consists of only 0 or 1 .  For our 
purpose in studying the stability of discrete-time systems, we have to be more 
precise. Let A I ,  . . . , 1, be the distinct eigenvalues of A ,  and let the characteristic 
and minimum polynomials of A be 

det(s1-A)=(s-A,)"' . . . ( ~ - 2 ~ ) " '  and 

q(s)=(s-A,)"'  . . . (s-A,)"' , 

respectively, where n, + , . . + n, = n and mi I ni, i = 1 ,  . . . , 1. For each i ,  let si be 
the dimension of the vector space spanned by all eigenvectors corresponding to 
the eigenvalue Ai. si is called the geometric multiplicity of Ai and ni is called the 
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algebraic multiplicity of Ai. It is known that si < n i  also. To understand the Jordan 
canonical form J ,  it is best to imagine J as a block diagonal matrix. It turns out 
that the number of diagonal blocks that contain Ai on their main diagonals is 
equal to si. In fact, we can write 

J =  

’ BS,(J”J 

where the blocks that are not listed are zero blocks and 

i = 1, . . . .  sj and j = 1, . . . .  1, and again the entries that are not listed are zeros. In 
addition, for each j =  1, . . . .  I ,  the “leading block” B ,  ( A j )  is an mj x mj submatrix 
while the orders of the other blocks Bi(Lj), i >  1, are less than or equal to m j ,  such 
that the sum of the orders of all Bl(Aj), . . . .  B,,(Lj) is exactly n j .  It is also known 
that with the exception of a permutation of the diagonal blocks, the Jordan 
canonical form J of A is unique. 

One important consequence is that if mi= 1, then the n, x n, submatrix Ai of J ,  
consisting of the totality of all blocks that contain the eigenvalue Ai,  is a diagonal 
submatrix; that is, 

Another important consequence is that if m j 2  2, then there is at least a 1 on the 
( i ,  i+ 1) diagonal of the corresponding n j  x n j  submatrix A.  More precisely, 

A j =  L (6.1 1) 

where b,,  . . . .  b , , - 2  are 0 or 1. 
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We can now discuss the problem of stability for discrete-time linear systems. 
Let A be an n x n constant matrix and consider the time-invariant free linear 
system 

Without loss of generality, we assume in the following discussion that the initial 
time is k = O  so that the initial state is xo. 

Definition 6.5 A discrete-time free linear system described by (6.12) is said to be 
stable (in the sense of Lyapunoo) about 0 if for any E > 0, there exists a 6 > 0 such 
that Ixk I < E  for all sufficiently large values of k whenever Ixo I < 6. It is said to be 
asymptotically stable about 0, if Ixk(+o as k+  co, or equivalently, 

lim ( A k x o l = O  
k+ 30 

(6.13) 

for all xo in R”. (Note that in view of Remark 6.2, we have dropped the 
requirement JxoJ < 6 in the definition of asymptotic stability about 0.) 

Again asymptotic stability is a stronger notion than stability in the sense of 
Lyapunov. In fact we have the following characterization. 

Theorem 6.4 Let A j ,  j =  1, . . . , 1, be the distinct eigenvalues of the n x n matrix 
A. Then the corresponding discrete-time free linear system (6.12) is asymptotically 
stable about 0 ifand only i f l A j l  < 1, j =  1, . . . , 1. I t  is stable about 0 in the sense of 
Lyapunoo ifand only iflAjl 5 1 for allj, and for each j with lAjl = 1, A j  is a simple root 
of the minimum polynomial q(s) of A. 

Our proof of this theorem relies on the Jordan canonical form J of A as 
discussed early. We do not, however, require the fine structure of the diagonal 
blocks B j ( l i )  but only the weaker diagonal blocks A ,  as given in (6.10, 11). Let us 
arrange the eigenvalues A,,  . . . , l, in such a way that m, = . . . = m p =  1 and 
mP+ . . . , m, > 1. Then we have from (6.10, 11). 

where, f o r j = p +  1, . . . , I ,  A j  is an nix  nj  submatrix (ni>mj>2)  given by (6.11). 
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Hence, taking the kth power, we have 

with 

(6.14) 

(6.15) 

where each * denotes a term whose magnitude is bounded by 

k . .  . ( k - i + l ) % - i ,  l< i<nj - l ,  j = p + l , .  . . , 1 . 

First we note that if all lAjJ<l, then IX,I=IA~X,I=IPJ~P-~~~~ 
SIP1 IP-'x,l lJkl which tends to 0, since each entry of Jk tends to 0 as k+co 
(Exercise 6.8). Conversely, if (6.13) holds, then we must also have lAjl < 1 for all j ,  
since by choosing 

x , = P [ l  0 . .  . o  1 0 . .  . o . .  . 1 0 . .  .O]' -- - ,  
n1 n2 n1 

it follows from (6.14) and (6.15) that 

( 1 A 1 1 2 k +  . . . + 1 ~ 1 1 2 k ) 1 / 2 = I J k P - 1 X O I = I P - 1 A k X O I I  1p-l IAkx,l . 

To establish the second statement in Theorem 6.4, we first assume that if l i j l  
= 1 then mj is 1 ,  so that 1 < j ~ p ,  and consequently lAil< 1 for i = p +  1, . . . , 1. 
Hence, for each xo, writing 

XO=PCY, . . .  y n l +  . . . +  n p  Y n , +  . . . +  n p + l  . . . y n I T  2 

we have 
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where the o(1) term is a contribution from the eigenvalues i.i, i > p +  1 ,  and this 
term tends to zero since < 1 (Exercise 6.8). Hence, for every given E > 0, we can 
find a 6 > 0 to control the term y :  + . . . +y; ,  + , , . + f l p ,  so that Ixo I < S implies 
Ixk I < E  for all large values of k .  Conversely, if lijl = 1 but is not a simple root of 
the minimum polynomial of A ,  i.e. mj 2 2, then by choosing 

xo=P[,O.. . . . o ,  0 6 0 . . . 0 ] 7 ,  
I l l + . .  + n ,  , 

we have, from (6.15), 

(Ik(= ( A k X , (  = ( P J k P -  l X o (  

=IP[_o. .  . . . o ,  ,kj.!-' 6 j.:6 0 .  . . O]'I 
1 1 , t  . .  + , I ,  , 

as k b c o  for each 6 >O,  where P =  [ p r , ] ,  because the (n ,  + . . . + n j -  + 1)st 
column of P cannot be identically zero, P being nonsingular. Since S>O is 
arbitrary, the system is not stable in the sense of Lyapunov about 0. This 
completes the proof of the theorem. 

Remark 6.6 If the system (6.12) is asymptotically stable about 0, we have 
actually proved that lxkl decays to zero exponentially fast. There is another way 
to see this behavior. Consider A as a transformation from R" into R". Then we 
may consider the operator norm of this transformation defined by 

(which really means the maximum of the lengths of the vectors A x  among all unit 
vectors x in R"). There is an important result that relates lIAk(l to the magnitudes 
of the eigenvalues of A .  If ibis are the eigenvalues of A,  this result, called the 
Spectral Radius Theorem, says that the sequence { J(AklJ ' I k }  converges as k-m, 
and 
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Hence, if all IILjl < 1, then for any p with lAjl < p <  1, we have 

IIAkll IPk 

for all large values of k ,  so that (Exercise 6.13) 

l x k l  = I A k x O \  5 1 1  Ak I /  l x O l  5 IxO (6.16) 

Inequality (6.16) is analogous to inequality (6.7) for continuous-time systems. 
It is, therefore, very natural to consider discrete-time time-varying free linear 
systems and to characterize the ones that are “exponentially stable” about 0 (i.e., 
satisfying (6.16)). We leave this as an exercise to the reader (Exercise 6.15). 

. 

6.4 Input-Output Stability of Continuous-Time Linear Systems 

We next consider input-output stability of a non-free linear system. It will be 
interesting to see that although there is a very tight relationship between 
asymptotic state-stability (i.e. asymptotic stability of a free system) and the input- 
output stability that we are going to discuss, there does exist an input-output 
stable linear system that is not state-stable, as mentioned in Sect. 5.4. The main 
reason is a pole-zero cancellation (Theorem 5.2 and the example following 
Theorem 6.8). 

We will first consider the continuous-time state-space description. lf we have 
an input function u(t )  which is bounded for all t 2 to ,  one would certainly hope to 
have a bounded output response u( t ) .  This is essentially the definition of input- 
output stability (or bounded-input bounded-output stability). Recall that the 
output u not only depends on the state vector x, but sometimes also depends on 
the input u directly, as described by the transfer matrix D ( t )  in (1.7). Since u is 
supposed to be bounded and an unbounded transfer matrix is unlikely and very 
undesirable, the term D(t)u is usually discarded in the discussion of input-output 
stability. That is, we will consider the state-space description 

i = A ( t ) x + B ( t ) u  
u = C ( t ) x  . (6.17) 

Definition 6.6 A linear system with the state-space description (6.17) is said to 
be input-output stable about an equilibrium point x, (or I - 0 stable, for short), if 
for any given positive constant M I ,  there exists a positive constant M , ,  such that 
wheneverx(to)=x,and lu(t)( < M I  forall t>t,,wehave Iu(t)15M,forallt2t0. 

In view of Remark 6.1, we will always assume the equilibrium point x, to be 0. 
Hence, the input-output relation can be expressed with the aid of the transition 
matrix by 

t 

~ ( t )  = S C(t)@(t,  S) B(s)u(s) ds , 
10 

(6.18) 
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see (2.4). This relationship describes the I - 0 stability completely. For con- 
venience, we introduce the notation 

h*(t, s)= C(t)@(t,  s )B(s )  (6.19) 

so that (6.18) becomes 
f 

v( t )=  S h*(t, s)u(s)ds . (6.20) 

Theorem 6.5 A linear system described by (6.17) is I - 0 stable if and only if 
there exists a positive constant M ( t o )  such that h*(t, s) satisfies 

to 

(6.21) 

One direction is clear. If 1 u(t)l I M for all t 2 to and (6.21) is satisfied, then 
by using the inequality in Exercise 6.6 and Schwarz’s inequality, we have, 
from (6.20), 

f 

l v ( t ) ls  1 Ih*(t, s)u(s)l ds 
to  

f 

51 Ih*(t, s)I Iu(s)lds 

< M I  J Ih*(t, s ) lds<M,M ( t o )  . 

f0 

11 

to  

To prove the converse, we assume, on the contrary, that (6.21) is not satisfied 
but lu(t)l< M ,  implies Iv(t)l < M 2  for all t 2 t o .  Let hi,([, s) be the (i,j)th entry of 
the q x p matrix h*(t, x). Since (6.21) is not satisfied for each (arbitrarily large) 
positive constant N we can choose t ,  > t o  such that 

11 

1 lh*(t,, 41 ds>pqN 
f0 

Hence, we have 
t I  
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which implies 

(6.22) 

for some (a, fl), where 1 S a l q  and 1 ~ f l ~ p .  Now choose u= [0 . . . 0 
sgn k,,(tl, s) 0 . . . 0IT, where sgn ka,(tl, s) is placed at the flth component of u 
and denotes the function which is 1 if k,,(t,, s) is positive, 0 if ka,(t,, s) is 0, and 
- 1 if k,,(rl, s) is negative (usually called the signurnfunction). Then (6.20 and 22) 
give 

That N was arbitrarily chosen contradicts the assumption Iu(t)l I M ,  for all 
t 2 to.  This completes the proof of the theorem. 

Since the q x p matrix k*(t, s) defined in (6.19) plays a very important role in 
characterizing I - 0 stability, it is worth investigating this function in the time- 
invariant setting. 

Let A,  B, C in (6.17) be constant n x n, n x p ,  and q x n matrices. Then (6.19) 
becomes 

Note that the right-hand side can be considered as a function of one variable 
( t- s) .  Hence, we can introduce the q x p matrix-valued function 

k(t)=CefAB , (6.23) 

so that k*(t, s) = k(t - s). For convenience, we consider to  2 0 and for any input 
u(t), we define u(t) to be 0 for t < t o .  Then (6.20) can be written as 

f f 

u( t )  = J h(t  - s)u(s) ds = J k( t - s) U ( S )  ds 
10 0 

=(h*u) ( t )  3 

(6.24) 
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called the convolution of h with u. Since the Laplace transform of a convolution is 
the product of the Laplace transforms, we can conclude that 

C ( S ~  - A ) * B  (9 h) ( s )  = H ( s )  = ~~~ 

det(sl-A) 
(6.25) 

is the transfer,function of the system [cf. (5. I l)]; or equivalently, h(t)  in (6.23) is the 
inverse Laplace transform of the transform function H(s) .  That is, h( t )  is the 
impulse response of the time-invariant linear system (6.17). 

Theorem 6.6 The impulse response h(t)  sati.sfies 

f f - 1 0  

111 0 
j (h(t-s))d.y= j I h ( T ) ( d T I M ( t 0 ) < &  

for all t 2 to ifand only i f  all the poles of the tran@r,function H ( s )  lie on the left 
(open) half s-complex plane. 

In view of Theorem 6.5, an equivalent statement of the above theorem is the 
following. 

Theorem 6.7 A time-invariant linear system described by (6.17) is I - 0 stable if' 
and only ifall the poles of its transferfunction lie on the l e f t  (open) ha(fcomp1ex 
plane. 

we have 
I t  is sufficient to prove Theorem 6.6. Imitating the argument that yields (6.5), 

(6.26) 

where j.,, . . . , j., are the poles of H(s) with multiplicities n , ,  . . . > nd 

respectively, and Qu are constant q x p matrices (Exercise 6.16). The theorem 
then follows from standard estimates (Exercise 6.17). 

Note that the poles of the transfer function H ( s )  are eigenvalues of A, but 
since there is a possibility of pole-zero cancellation of H ( s )  in the expression 
(6.25), the converse does not hold. However, if the linear system is both 
completely controllable and observable, Theorem 5.2 tells us that the set of poles 
of H ( s )  is the same as the collection of eigenvalues of A .  Hence, as a consequence 
of Theorems 6.2 and 7, we immediately have the following result. 

Theorem 6.8 Let the time-invariant system described by (6.17) be completely 
controllable and observable. Then the system is 1-0 stable ifand only i f the free 
linear system x = A x  is asymptotically stable about the equilibrium point 0. 

Let us return to the example (5.12) considered in Sect. 5.4; namely, 

A = [  -2 O ] .  1 .=[-;I, c=ro -11 
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Recall that the eigenvalues of A are 1 and - 3 so that the free linear system is not 
(state-) stable, but the only pole of H ( s )  is - 3 so that it is input-output stable. 
Indeed, this system is observable but is not controllable. In addition the 
transition matrix is 

(which is unbounded), but the impulse response 

h ( t )  = CefAB = e p  3f 

certainly satisfies 

f 

I h(t - s) I ds < 4 
0 

for all t 2 0. 

6.5 Input-Output Stability of Discrete-Time Linear Systems 

We next consider discrete-time linear systems. Only time-invariant settings will 
be discussed (cf. Exercise 6.18 for time-varying systems). That is, we now study 
the state-space description 

(6.27) 

As before, we have assumed the transfer matrix D to be 0. 

Definition 6.7 A linear system with the state-space description (6.27) is input- 
output stable about 0 (or 1-0 stable, for short), if there exists a positive constant 
M such that whenever x0 = 0 and Iuk I < 1 for k = 0, 1, . . . , we have luk I < M for 
k = O ,  1 , .  . . . 

Since x0 = 0, we have the input-output relationship 

k -  1 .. - 
O k =  h k - l u l  

1=0 

where the q x p matrices hi are defined by 

(6.28) 

(6.29) h , = C A j - ' B ,  j = l , 2 , .  . . , 
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which we will call the impulse response sequence of the system. Analogous to  
Theorem 6.5, we have the following test for 1-0 stability (Exercise 6.19). 

Theorem 6.9 
stable if and only if there exists a positive constant K such that 

A discrete-time time-invariant system described b y  (6.27) is I - 0 

k 

for all k =  1 ,  2, . . . . 
The input-output relationship (6.28) can be thought of as the convolution of 

the sequence of q x p matrices { A j }  and the sequence of p-vectors { u j } .  In fact, if 
we define 

hj=O, ul=O , 

for j l 0  and l<O,  then (6.28) can be written as 

m 

U k =  hk-,u1 . 
I = - 3 0  

Now, taking the z-transforms of both sides yields: 

where 
a, 

H(z)= C h j z - J  
j =  1 

(6.30) 

is the transfer function of the discrete-time system. We have already mentioned in 
Sect. 5.3 that the z-transform properties are completely analogous to the Laplace 
transform properties; hence H(z) has exactly the same formulation as (5.1 1); 
that is 

C(ZZ - A)*B 
H(z)= 

det(z1 - A )  
(6.31) 
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(Exercise 6.20). Write the q x p matrix hj as 

1 <l<q,  1 < m < p ,  and j =  1, 2 , .  . . , so that 

H ( z ) =  c jpz- j  [ j I 1  ] 
It is obvious that 

if and only if 

for all 1 I 1 q and 1 5 m < p. Also, since each power series 

(6.32) 

(6.33) 

(6.34) 

is a rational function in z -  ' from (6.31, 32), the inequality (6.33) is satisfied if and 
only if the power series (6.34) is an analytic function in (a neighborhood of) 
Iz - 1 I 1 or Iz I 2 1, 1 I I I q, 1 I m I p ,  or equivalently, all poles of H ( z )  in (6.3 1) lie 
in the open unit disk JzI < 1 (Exercise 6.21 where w=z- ' ) .  An application of 
Theorem 6.9 yields the followin'g result. 

Theorem 6.10 
stable if and only if all the poles of its transfer function H(z )  lie in I z I < 1. 

Again, if there is no pole-zero cancellation in (6.31), then the set of poles of 
H ( z )  coincides with the collection of eigenvalues of A.  Hence, Theorems 5.2 and 
6.4 together yield the following result. 

A discrete-time time-invariant system described by (6.27) is I - 0 

Theorem 6.1 1 Let the discrete-time time-invariant system described by (6.27) be 
completely controllable and observable. Then it is I - 0 stable if and only ifthe,free 
linear system xk+ = A x ,  is asymptotically stable about 0. 

Note that if a discrete-time free linear system is asymptotically stable about 0, 
then the corresponding state-space description is I - 0 stable. However, without 
the additional assumption on both complete controllability and observability, 
the converse usually does not hold (Exercises 6.22, 23). 
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Exercises 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

6.8 

6.9 

6.10 
6.1 1 

Determine all equilibrium points of the free linear system with system 
matrix: 

0 0 0  

Determine all equilibrium points of the time-varying free linear system 
with system matrix: 

If A ( [ )  is nonsingular for some t > to ,  show that the only equilibrium point 
of i = A ( t ) x  is 0. 
Let E and F be m x n and n x p matrices. Prove the following Schwarz’s 
inequality: IEFI, 5 lE121F‘12. Compare with Exercise 2.8. 
Use the triangle inequality in Exercise 2.8 to show: 

I l ~ l p - l ~ l p l ~ l ~ + ~ l p  3 

where A and B are matrices of the same order and p 2  1. 
Let F ( t )  be an m x n matrix-valued continuous function of t .  Show that 

(Hint:  Use Riemann sums and Exercise 2.8). 
If a free linear system is asymptotically stable about 0, show that (6.3) must 
be satisfied. (This completes the proof of Theorem 6.1). 
Let a and b be positive constants. Prove: 

(a) lim e-”‘t”=O and 

(b) lim macm=O if JcI < 1 . 

Show that if If(t)I-<iMexp[-at] 
If(t)l I exp( -ct)  for all large values of t. 
Prove Theorem 6.2 by using Exercise 6.8 and Theorem 6.1. 
Consider the Jordan canonical forms: 

‘-+a 

m - r m  

t” for all t 2 0  and O<c<a, then 
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6.12 

6.13 

6.14 

6.15 

6.16 
6.17 

6.18 

6.19 
6.20 
6.21 

6.22 

6.23 

where the unspecified entries are 0. Determine J :  and 5: and show that 
limk+m lJ:12=limk+m (J:(,=Oif(A(<l;and IJ:),is boundedbut IJ;12 is 
not if 12 = 1. 
Let 

Discuss the stability (in the sense of Lyapunov) about 0 of the free linear 
systems: 
(a) f = A x  and (b) X k + l = A X  . 
Let IlAll be the operator norm of the matrix A. Show the following: 

(b) If i, is an eigenvalue of A ,  then 121 5 lJA 1) . 

Let A be an IZ x n constant matrix. Show that X k +  = A x ,  is stable about 0 if 
and only if I(A k ( /  is bounded for all k,  and is asymptotically stable about 0 if 
and only if lIAkll+O as k+m. 
Define asymptotic and exponential stability for discrete-time time-varying 
free linear systems. Give criteria for testing these stabilities. 
Derive (6.26) by using partial fractions. 
Prove Theorem 6.6 by following the proof of Theorem 6.2. Note, however, 
that since we require a uniform bound on the integral, even simple 
eigenvalues with zero real part are not permissible. 
Discuss I - 0 stability for discrete-time time-varying linear systems and 
formulate an analog of Theorem 6.5. 
Prove Theorem 6.9 by imitating the proof of Theorem 6.5. 
Following the derivation of (5.1 l), derive (6.31). 
Letf(w)= C 0" a,w" be a rational function which is analytic at w =O. Prove 
that the radius of convergence of the power series is larger than 1 if and 
only ifC,"Ja,)<co. 
Give an example of a completely controllable I - 0 stable time-invariant 
linear system which is not asymptotically state-stable (i.e. with a corre- 
sponding asymptotically unstable free linear system). 
Give an example of an observable 1 - 0  stable time-invariant linear 
system which is not asymptotically state-stable. 

(a) I lAI I I IA l2  

(4 llA+Bll I IIAII + IIBII and IlaA II =la1 IIA II . 



7. Optimal Control Problems and Variational Methods 

In the previous discussions on controllability, we have been concerned with the 
possibility of bringing a state (vector) from an initial position to an assigned 
position, namely the target, in a finite amount of time. In practice, many factors 
must be brought into consideration. For instance, the state may not be allowed 
to travel outside a certain region and the control (function) has certain limited 
capacity. Another important consideration is that there are certain quantities 
that we wish to optimize. Usually the quantities to be minimized are time, fuel, 
energy, cost, etc. and those to be maximized include speed, efficiency, profit, etc. 
The pro%lem under consideration is, therefore, to optimize a quantity, called a 
functional, which usually depends on the control function, the state vector, and 
the time parameter, and at the same time, to satisfy certain constraints, namely: 
the control equation of the state-space description, a region the state vector is 
confined to, and an admissible collection of functions to which the control 
function belongs. 

c- -- 

7.1 The Lagrange, Bolza, and Mayer Problems 

Let us consider the continuous-time models. As usual, J denotes the time 
interval, x = x ( t )  an n-dimensional state vector, and u = u(t )  a p-dimensional 
vector-valued control function; but instead of the linear control equation of the 
state-space description, let us consider the more general control equation: 

., 
f = f ( x ,  u, t )  d J7.U 

,( where f is a vector-valued (linear or nonlinear) function defined on !2 x J ,  with 
!2 c R" and J = [ t o ,  a). Let x ( t )  be confined to a set X c R" for all t E J and let U 
be a collection of vector-valued functions containing u= [ u ,  . . . Typically, 
we might have: 

a , ~ u , ( t ) ~ b , ,  i = l ,  . . . ,  p and ~ E J  or 

Iu(t)I,Ic, t E J  , 

etc. Let us study the optimization of the functional 

(7.2) 
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where g(x, u, t )  is a scalar-valued continuous function defined on X x U x J (i.e. 
x E X ,  u E U ,  and t E J), and x depends on u according to (7.1). This is usually 
called the Lagrange problem. If g does not explicitly depend on t ,  then the domain 
of g is simpIy r e f i c 6 X  x U ,  and if g depends only on u directly, its domain of 
definition is further reduced to U ,  etc. Examples of this optimal control problem 
are: 

i) minimum-energy control problem, with 

g(u)=uTR(t)u , 

where R( t )  is a symmetric and non-negative definite matrix; 
ii) minimum-fuel control problem, with 

iii) minimum-time control problem, with 

s ( u ) =  1 

(where t ,  depends on u). 

The functional F(u) in (7.2) to be optimized (minimized or maximized) is called a 
costfunctional (or penaltyfunctional). Since min { F(u) }  = - max { - F(u)} ,  there is 
no distinction between the two optimization processes. For this reason, we will 
usually discuss the minimization problem. If we add another term to (7.2), say, by 
considering the functional 

f l  

F ( u ) = W , ,  X ( t l ) ) +  J d x ,  u, t ) d t  , 
f0 

we have what is usually called the Bolza problem. By considering the functional 

F ( u ) = W , ,  x(t1)) 

alone, we have what is called the Mayer problem. Of course, in all the above 
statements, we must treat the indicated variables t , ,  x ( t l ) ,  and x as functions of 
the control function u which is restricted to U ,  and remember that x satisfies (7.1) 
with the initial condition x(t , )=x,  such that X E X .  It is clear that the Lagrange 
and Mayer problems are special cases of the Bolza problem. On the other hand, 
by introducing an extra state variable, it can be shown that the Bolza problem 
can be changed to the Lagrange problem or the Mayer problem (Exercise 7.2). 

It is also interesting to mention that the three problems mentioned here are 
special cases of the so-called Pontryagin function: 

c_ 

F(u)=cTx( t , )  , (7.3) 
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where c7' = [c, . . . c , ]  is a constant row vector. For the Lagrange problem, for 
instance, we may introduce a state variable x,+ , defined by 

X n + , ( t ) =  i y ( x ,  u, t ) d r  
to  

and consider the new state vector 

in R"+,, so that with c T = [ O .  . . 0 I], we have 

f I  

c T Y ( t l ) = X n + , ( t l ) =  S d X ,  4 z )dz  . 
fo 

Of course, the new state vector must satisfy the control equation: 

If the terminal time t ,  is free and the terminal state x(tl)  is restricted, then 
both these quantities depend on the control function u, and the optimal control 
problem is, in general, very difficult to solve. In this chapter we do not intend to 
solve the most general problem, but rather consider the special case where t ,  is 
fixed and no restriction is imposed on x ( t , ) .  The more general problems will be 
studied in the next three chapters. 

7.2 A Variational Method for Continuous-Time Systems 

More precisely, the problem we will study here is to find necessary conditions 
that the optimal control function u* and its corresponding optimal trajectory (or 
state) x* defined by 

F(u*)=minjF(u): u e U )  , 

f* =.f(x*, u*, t ) ,  t o  5 f s t 1 

x* ( t , )  = Xg 

, (7.4) 

must satisfy, where F(u) is defined by (7.2) with initial condition x ( t , ) = x ,  and 
fixed terminal time t ,  such that i = f ( x ,  u, t) for t , < t <  t , .  

A classical approach to this problem is via the calculus of variations. This 
method, however, has its limitations. Since partial derivatives must be taken, we 
require the functions f ( x ,  u, t )  and g(x, u, t )  in (7.2) to be continuous and have 
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continuous partial derivatives with respect to all components of x and u. In 
addition, we require that the admissible set U of control functions is “complete” 
in the space of vector-valued continuous functions k ( t )  E R p ,  t E J ,  in the sense 
that whenever 

f I  S kT( t )  q(t) dt = 0 
111 

for all q~ U ,  then we must have k =O. An example of such a set U is the collection 
of all vector-valued piecewise continuous functions u with IuI < 1 (Exercise 7.3). 
Since we will be taking the “variations” with respect to functions in U ,  it is also 
convenient to assume that every function u in U is interior to U ,  in the sense that 
for each q~ U ,  there exists an e O > O  such that ( u + E ~ ) E  U for all [el <e,. Hence, if 
l(u, t )  is a vector- or scalar-valued function, with continuous first partial 
derivatives with respect to the components of u, say l(u, t )=  [I1 . . . I,]’ and 
?/E U ,  then the variation of I= l (u,  t )  with respect to u along q is defined by 

1 

E-0 I: 
61=6,1=lim ~ [l(u+cq, t)-l(u, t ) ]  (7.5) 

where, using the notation u= [ u ,  . . . up]’,  the rn x p matrix dl/au is given by 

In particular, if I= I is a scalar-valued function, then dl/du is a row-vector which is 
usually called the gradient of I with respect to u. We will take the variations of 
both the control equation (7.1) and the cost functional (7.2). Let us use the 
notation 

5 = 6 x .  

Then from (7.1) the variation o f f  becomes (Exercise 7.4): 

(7.7) 

This equation can be “solved” by using the state transition equation (2.4). Since 
the initial state x(t,)=x, is unchanged as long as the control functions are 
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chosen from U ,  we have g ( t o ) = O  from the definition (7.5). Hence, if @(t, s) 
denotes the transition matrix of (7.7), we have 

t 

(7.8) 
af  

a t ) =  w, t)i)ll(x, u, t) q ( 4 d t  . s 10 

On the other hand, taking the variation of the cost functional (7.2) with respect to 
u along q, and keeping in mind that we have assumed a fixed final time t l ,  we 

/ have / 

To minimize the cost functional F(u), i t  is necessary that 6,F(u) = 0 for all q in 
U .  Hence, putting (7.8) into (7.9), interchanging the integrab, and using the 
completeness of U in the space of continuous functions, we arrive at the following 
necessary condition for an optimal F(u) (Exercise 7.5): 

-I 
(7.10) 

f I  ;-gL> 
3g -(x*, u*, t)+ @.*, u*, t ) @ ( t ,  z)-(x*, af u*, t)dt=O . c> - I  .t , 
BU i?U 

r 

Here, t o I t I t l ,  and u* and x* denote an optimal control function and its 
corresponding optimal trajectory (state). 

In order to be able to work with the equation (7.10), we introduce an 
n-dimensional vector-valued function p =p( t ) ,  called a$ostazwhich is defined, 
for any pair (u, x) satisfying (7.1), to be the unique solution of the initial value 
problem 

(7.1 1) 

Letp* be the costate corresponding to the optimal pair (u*, x*) and call it an 
optimal costate. We also call (7.11) the costate equation. Let Y(t, t )  be its 
transition matrix. By Lemma 4.1, we have Y(t, t)=@’(t, t) where @(t ,  t) is the 
transition matrix of (7.7). Hence, we have 
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so that (7.10) becomes 

a g  af 
- au (x*, u*, t )  +P*T(t)% (x*, u*, t )  =o, to  I t  I t ,  . 

That is, if we define the functional 

H ( x ,  u, p ,  t )=g(x ,  4 t ) + P T f ( X ,  u, t )  (7.12) 

which is called the Hamiltonian, a quantity that often occurs in classical 
mechanics, then a necessary condition for u* and x* to be optimal is that 

aH 
-(x*, u*,p*,  t )=O,  t E [ t , ,  t , ]  
au 

Let us restate this result. 

Theorem 7.1 A necessary conditionfor the pair (u*, x*) to satisfy 

F(u*)=min[F(u): U E  U ]  , 

1* =f (x* ,  u*, t ) ,  to 5 t I t ,  , 

(7.13) 

(7.14) 

where F(u) is given by (7.2) with initial condition x( t , )=x ,  andfixed terminal time 
such that (u, x) satisfies (7.1) is the existence of a costate p suck that the 
corresponding Hamiltonian defined by (7.12) satisfies (7.13). 

Note that if g is independent of x, then since (7.1 1) has a unique solution, the 
costate p is always zero, so that we have the following result. 

Corollary 7.1 A necessary conditionfor the pair (u*, x*) to satisfy (7.14) where 
f ,  

F(u) = j g(u, t )  d t  
10 

such that i = f ( x ,  u, t),  x(t,)=x, and t ,  heingjixed is that dg(u*, t)/du=Ofor 
t ,  I t  If,. 

Hence, if y does not depend on the state, as in the case of the minimum-energy 
control problem, and the terminal time and state are fixed, determining (u*, x*) is 
usually fairly easy. However, in many problems in control theory, the cost 
functional depends on the state vector x. Let E,  Q( t )  and R(t) be symmetric and 
nonnegative definite matrices of appropriate dimensions. The so-called linear 
regulator problem (with a linear state-space description) involves a cost func- 
tional of the form 

f ,  

F(u)=  + X T ( t , ) E X ( t , ) +  + S [xT(t)Q(t)x( t )+uT(t)R(t)u( t)]  dt ; (7.15) 
io 
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and the linear servomechanism (again with a linear state-space description) is a 
problem of approximating a certain desired trajectory y =y ( t )  by minimizing the 
cost functional 

7.3 Two Examples 

To illustrate the method described in Theorem 7.1, let us consider the one- 
dimensional control equation (of a state-space description) 

i = x + u ,  

with the initial state x(O)= 1, and determine the optimal control function u* and 
its corresponding trajectory x* when the cost functional to be minimized is 

1 

F (  u) = 3 1 [x’( t )  + u2( t ) ]  d t  . 
0 

The costate equation is clearly 

p =  -p-x 

p ( l ) = O  

since dg/ax = x. Therefore, combining this with the original control equation, we 
have a so-called “two-point boundary value problem”: 

[;I=[-: -:][;]+[;]u 

x(O)=l, p(l)=O . 

Since the Hamiltonian is 

H ( x ,  u, p ,  t )  = 3 (x’ + u2) + p(x + u) 

and dH/au = u + p ,  we also have, for optimality, 

p * = - u *  . 
That is, we must solve the two-point boundary value problem: 

[;:I = [ - ; I :I [;I] 
x*(O)=l, p*(l)=O . 



7.3 Two Examples 77 

An elementary calculation shows that 

e - JZt 
1 

(3 + 2,,h)ec2J2 + 1 
eJZl+ 1 

( 3  - 2$)e2Jz + 1 
x*(t)= 

provided, of course, that u* E U (Exercise 7.6). 

instance, consider the initial valued control problem 
However, a two-dimensional problem is much more complicated. For 

with cost functional 
1 

F ( u )  = 41 [x'(t)x(t) + ~ ' ( t ) ]  dt 
0 

to be minimized. The costate equation here is 

- dH (x*, u*, p* ,  t )  = u* +p*' [;I = o  
au  

Hence, we must solve the two-point boundary value problem: 

0 0 0 '  1 ;  0 0 -i][::J 0 

______I _ _ _ _ _ _  
-1 0 ;  0 

0 - 1 ! - I  0 

x*(O)=[l 0)' 

p*(l)=[O 01' . 

The optima1 control function is then 

u*= -.*f;] , 
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provided it lies in U .  Solutions of two-point boundary value problems are 
usually not easy to obtain. 

7.4 A Variational Method for Discrete-Time Systems 

We next discuss the discrete-time setting. Let the control equation of the state- 
space description be 

x k +  1 = f ( x k ,  uk?  (7.17) 

with initial state xko=yo. The problem is to minimize the cost functional 

(7.18) 

where { x k )  E X  and { u k }  E U .  Assuming that .f and y are continuous and have 
continuous first partial derivatives with respect to all components of xk  and uk 
and that U contains “delta sequences” of p-vectors with length k ,  - ko + 1, i.e. 
( 0 , .  . . , 0, y k ,  0 , .  . . , O }  where Yk#O for all k = k , ,  . . . , k , ,  we have the 
following result. 

Theorem 7.2 A necessary condition for the pair ( (u:} ,  {x:}) to satisfy 

F (  { u: } ) = min { F (  juk} ) :  { uk } E U 1 , 
x:, 1 = f ( X : ,  4, k )  9 

G =Yo 

where F ( { u k } )  is given by  (7.18) with initial state xko=yo  andjxed terminal time 
such that ( { u k } ,  { x k } )  satisfies (7.17), is that there exists a costate sequence { P k }  

defined by 

so that the Hamiltonian 
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satisfies 

for k = k , ,  . . . , k , .  

The proof of this theorem is similar to that of Theorem 7.1 (Exercise 7.10). 

Exercises 

7.1 

7.2 

7.3 

7.4 
7.5 

7.6 

7.7 

Consider the following controlled damped harmonic oscillator with mass 
1. Let 8 be the angle of the oscillator, a the damping coefficient, and 0, the 
circular frequency. Then for small values of 101, the motion of the oscillator 
can be approximated by the solution of the differential equation 

i ( f )  + a&) +o28(t)= u(t) 

with initial angular position and velocity 8(0) = 8, and &O)= 8, respect- 
ively, where u(t)  represents the input control at time t. Suppose that 
lu(t)l< 1 and we wish to bring the oscillator to rest in a minimum amount 
of time. Give a mathematical description of this optimal control problem. 
Prove that the three optimal control problems (Le., the Lagrange, the 
Mayer, and the Bolza problems) are equivalent in the sense that each one 
can be reformulated as the others. 
Let U be the collection of all vector-valued piecewise continuous functions 
u with lulz < 1. Prove that if k is continuous and 

‘s F ( t )  q(t) d t  = 0 
to  

for all q~ U ,  then k( t )  
Verify the identity (7.7). 
Prove that the necessary condition 6,F(u) = O  for all q~ U is equivalent to 
(7.10). 
Supply the detail of the solution of the two-point boundary value problem 
in determining the optimal pair (u*, x*) of the one-dimensional example in 
Sect. 7.3. 
Consider the one-dimensional optimal linear servomechanism problem of 
finding the optimal control u* and the corresponding optimal trajectory 
x* that approximates y(t)= 1 such that the pair (u*, x*) satisfies the linear 
system i = - x + u with initial condition x(0) = 0 by minimizing the cost 
functional 

0. 

1 

F (  u)  = + j [ (x - 1 ) 2  + u2] dt  . 
0 
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, 7.8 Prove that the optimal control u* for the linear regulator problem (7 .15)  
with E=O, R(t)positivedefinite,andx= A(t)x+B(t)u,x(t,)=x,isalinear 
feedback u*= - K ( t ) x *  with K ( t ) = R - ' ( t ) B ' ( t ) L ( t )  where the matrix L(t)  
is the solution of the matrix Riccati equation 

i ( t )  = - L( t )A ( t ) -  A T ( t ) L ( t )  + L( t )B( t )R-  ' ( t )BT( t )L( t ) -  Q( t )  

L ( t , ) = O  

(Hint: Let p = L ( t ) x  in solving the two-point boundary value problem.) 
Let R ( t )  be positive definite. Prove that the optimal control function u* for 
the linear servomechanism problem of minimizing 

7.9 

1 1  

F(u) = $ S [ ( y  - u)' Q ( t )  ( y - U )  + uT R (I) U] dt  , 
f l l  

where y is given, u = C ( t ) x ,  i = A ( t ) x + B ( t ) u  and x ( t , ) = x , ,  is a linear 
feedback u*= - K ( t ) x +  R - ' ( t ) B T ( t ) z  with K ( t ) =  R - ' ( t ) B T ( t ) L ( t )  where 
the matrix L(t)  is the solution of the matrix Riccati equation 

i ( t ) =  -L ( t )A ( t ) -  A T ( t ) L ( t )  + L ( t ) B ( t ) R  ' ( t ) B T ( t ) L ( t )  - CT(t)Q(t)C(t)  

L( t , )=O 

and the vector z is the solution of the vector differential equation 

i= - [ A ( t ) - B ( t ) R - ' ( t ) B T ( t ) L ( t ) ] T z -  C T ( t ) Q ( t ) y  

z ( t l ) = O  . 
(Hint:  Let p = L ( t ) x - z  in solving the two-point boundary value 
problem.) 

Let R ,  be positive definite and Qk be nonnegative definite for all 
k = k , ,  . . . , k , .  Prove that the optimal control sequence {u:} for the 
discrete linear regulator problem of minimizing 

7.10 Prove Theorem 7.2.  
7.11 

where xk + = A,xk + B,u, and x,,, =yo is a linear feedback sequence 
U ~ = - R ; ' B ~ L ~ + ~ X ~  where the sequence j L k }  is the solution of the 
matrix difference equations 

Lk = A:&+ , A ,  - I - Qk B k -  I R;-l1 B l -  1 Lk - A:&+ ' B k -  1 R&BkT_ 1 Lk 

+ Q k A k - i  

Lk,+l=O,  k = k , , .  . . , k , + 1 .  

(Hint: Let pk = L,x,-  , in solving the two-point boundary value problem.) 
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In the previous chapter, in order to be able to apply classical variational 
methods, the cost functional was assumed to be differentiable with respect to 
each control coordinate, and to simplify the optimal control problem, we also 
assumed that the terminal time was fixed. In this chapter, we will drop these 
restrictive and very undesirable assumptions. In order to handle the more 
general optimal control problem, we will introduce two commonly used 
methods, namely: the method of dynamic programming initiated by Bellman, and 
the minimum principle of Pontryagin. 

8.1 The Optimality Principle 

As usual, we first consider the continuous-time setting. Recall that J denotes the 
time interval, X a subset of R" to which the trajectory is confined, and U the 
collection of all admissible control functions. We now consider subsets of these 
three sets. We require the terminal time to lie in a closed sub-interval J ,  of J ,  and 
the terminal state (or target) to lie in a closed subset X ,  of X. Of course J ,  
and X ,  may be singletons, and M,=J ,  x X ,  will be called the target. For each 
( T ,  y ) ~  J x X ,  let U ( T ,  y )  be the subclass of control functions u in U such that the 
corresponding trajectory x = x(t)  defined by 

.f =.f(x, u, t )  

4 7 )  =Y 

lies in X when t < t < t , ,  for some terminal time t ,  = t , ( u ) ~ J ,  such that the 
corresponding terminal state x(tl) lies in X,. We call U ( z , y )  the admissible class 
of control functions with initial time-space ( T , Y )  (and target M,). Note that 
U ( T ,  y )  may be an empty collection. The optimal control problem is to determine 
an optimal control function u* and its corresponding optimal trajectory 
x* =x*(t), to 5 t I t : ,  where t:  =tT(u*)EJ,  is called the corresponding (optimal) 
terminal time, such that u * ~ U ( t , ,  xo) and 

1 g(x*, u*, t )dr= min g(x, u, t )dt:  U E U ( ~ , ,  xo) 
r: 

io 
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where both pairs (u*, x*) and (u, x) satisfy 

1 = f ( x ,  u, t )  

x(t0 1 = xo (8.2) 

and t ,  = t l ( u )  is always assumed to lie in J, and varies with u ~ U ( t , ,  xo). Note 
that if J ,  is a singleton and MT=iWn, this problem reduces to (7.4). 

The method of (continuous-time) dynamical programming depends on the 
following so-called “optimality principle”. 

Lemma 8.1 Let (u*, x*)  be a pair of optimal control and trajectory with initial 
time and state to and xo and terminal time t:EJT for the optimal control problem 
(8.1-2). Thenfor any z, to < z < t:, (u*, x*)  is also an optimal control and trajectory 
pair with initial time-space (7, x*(z)). 

To prove this lemma, we assume, on the contrary, that there is an admissible 
control r l ~  U ( z ,  x * ( T ) )  whose corresponding trajectory i ( t ) ,  5 1  t I T l ,  where 
t ,  =Tl(z7)~J,, lies in X with i ( F l ) ~ X T ,  such that 
- 

I 

t: 7 g ( i ,  rl, t)dt < J g(x*, u*, t)dt . 
7 1 

Define the pair (h, a) by: 

Then we have 

r 1: 

< S g(x*, u*, t)dt+ g(x*, u*, t)dt 
lo r 

t: 
= j g(x*, u*, t)dt . 

in 

Since (Fl, i ( T l ) ) = ( F 1 ,  i ( F l ) )  is in M , ,  we have a contradiction to (8.1). This 
completes the proof of the lemma. 
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8.2 Continuous-Time Dynamic Programming 

An important idea of Bellman is the introduction of the extended real-valued 

where t ,=t,(u),  i=f(x, u, t ) ,  x(z)=y,  x(t)EX for z s t l t , ,  ( t l , x ( t l ) )  lies in M,, 
and it is understood that V ( t ,  y )  = + co if U(7 ,  y )  is empty. V(z ,  y )  will be called a 
value function. 

In order to establish the method of dynamic programming, we also need the 
following lemma which is also called an optimality principle, but will leave its 
proof to the reader (Exercise 8.2). 

Lemma 8.2 Let x*(t), to s t  I t r ,  be an optimal trajectory for the optimal conrol 
problem (8.1, 2). Then for any t and z with t , I t<z<t : ,  

-- 

T 

I 
I f I  

min { 1 g(x, u, s)ds + g(x, u, s)ds 
U € U ( f ,  x * ( t ) )  

- - min { 1 g(x, u, s)ds+ min 7 g ( i ,  6, s)ds 
ucu(r, x*(t)) ; E L i ( r ,  x(T)) r 

It should be noted that in the last minimization process, the admissible 
control function ri. has the initial time-space (z,x(z)) where x is governed by 
UE U(t ,  x*(t)). Hence, the two minimization processes on the right-hand side 
cannot be separated. We again remind the reader - that the subscript 1 oft, and F, 
tells us that t ,  and F, are in the target: t , ,  tlEJ,. 

The method of continuous-time dynamic programming can be summarized 
in the following. 

Theorem 8.1 I f  (u*, x*) exists as a pair of optimal control and trajectory with 
initial time-space ( to ,  xo) and terminal time t:EJT for the problem (8.1,2), then 
(u*, x*) must satisfy both 

av av 
at -(t, x*) + [.- (t ,  f ( x * ,  u*, t)+g(x*, u*, t )  =o, to I t  I cy  
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The first order partial differential equation (8.3) that V( t ,  x) satisfies for 
(u, x) = (u*, x*) is usually called the Humilron-Jacohi-Bellman equation. To 
prove this theorem, let c > 0 such that t o  I t  < t + c < t : .  Then applying Lemma 
8.1, we have 

*. .f 2 

V(t  +&, x * ( t + & ) ) -  V( t ,  x * ( t ) )  

= - ,jC y(x*, u*, s)ds = - cg (x*, u*, t )  + O(E) . 
I 

On the other hand, we also have 

v(t + c, x * ( t  + E ) )  - V ( t ,  x * ( t ) )  = [ V(t + E,  X*(t + E))-  V ( t  + E ,  x*(t))] 

+ [ V ( t  + I:, x*(t))- V ( t ,  x*(t))] 

Since 

r: 

1: 

= J g(x*, u*, t ) d t  =o , 

the above estimate combined with (8.5) yields the Hamilton-Jacobi-Bellman 
equation (8.3). 

To verify (8.4), we again apply Lemma 8.1 to obtain, for t o i t l t : ,  

t:  

V(t, x*(t))= j g(x*, u*, s)ds 
I 

r I  
- - min { 'j.' y(x,u,s)ds+ j y(x ,u ,s )ds  

u e u ( I , x * ( l ) )  f I + &  

Hence, using Lemma 8.2, we have 

v(t, x* ( t ) )=  min { g(x, u, s)ds+ v(t+E, x ( t + E ) )  
ueu( r ,  x * ( t ) )  r 

- - min {cg(x*, u, t )  + V(t + E, x(t + E ) )  + O(E) } 
U E  U ( 1 ,  . % * ( I ) )  
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Since 

av 
V(t+E, x(t+c))= V(r,  x ( t ) ) + t :  -(t,x(t)) f ( x ,  u, t ) + r : - - ( t , x ( t ) ) + O ( E )  [E ] at  

and x ( t ) = x * ( t )  is the initial state under the minimization process in (8.6), we may 
deduce from (8.6): 

(r, x * ( t ) ) =  min 
at U € U ( f .  x * ( t ) )  

z;V 
- __ 

Now, taking the limit as E - ~ O  and applying (8.3), we obtain (8.4). 

Remark 8.1 To apply the method of continuous-time linear programming to 
determine the pair (u*, x*) of optimal control and trajectory, the first step is to 
solve forf(x*, u*, t )  and g(x*, u*, t )  in terms of ( d V / a x ) ( t ,  x*(t)) in the minimiz- 
ation process (8.4). Usually this requires writing u* in terms of x* and the n 
components of (dV/dx)(r, x*(t)). If g(x*, u, t )  is not differentiable with respect to 
the p control coordinates of u, classical variational methods cannot be applied 
and other “non-smooth” optimization methods are employed. The next step is to 
put f ( x * ,  u*, t) and g(x*, u*, t ) ,  which are now in terms of (the components of) 
(dV/ax) ( t ,  x*(t)), or u* in terms of x* and (dV/dx)(t, x* ( t ) ) ,  into (8.3) and solve 
this Hamilton-Jacobi-Bellman equation for V(t ,  x*) (usually in terms of I*). 
Finally, determine (u*, x*) from the available information. 

To illustrate this process, we return to the one-dimensional example: 

1 

minimize 3 1 [ x 2 ( t ) + u 2 ( t ) ] d t  

i = x + u ,  x(O)= 1 

0 I 
discussed in Sect. 7.3. Here, since y(x*, u)= x*’ + u2 is smooth in u, we can simply 
use calculus to determine u* in terms of x* and ( d V / a x ) = ( a V / a x ) ( t ,  x*)  by 
minimizing f ( ~ * ~  + u 2 )  +(a V/dx) (x*  + u), yielding 

av 
ax 

u * = - - .  

Thus, the Hamilton-Jacobi-Bellman equation becomes 

( V(1, x*(l))=O 
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Observing that the term x*’ must be isolated, we write V( t ,  x)=c(t)x’, so that 

av av 
at at 

- ( t ,  x*)=i.(t)x*’ , 

and (8.7) can be simplified to give 

t ( t )  = 2c2 ( t )  - 2c ( t )  - + 
c(l)=O . 

This is the Ricatti equation (Exercises 8.5,6). By setting c(t)= -i(t) /2z(t) ,  we 
have a second order linear differential equation 

z + 2i - z  = 0 

with i(l)=O. If we pick z( l )= 1, we obtain 

so that 
1 e- J;CI - t )  - eJ;(l - t )  

V(t ,  x)= -- X2 
2 (JZ+ l ) e -h - t )+ (* -  1 ) e h - r )  

Hence, we can find u*, and then x* by solving 

i* = x* + U* 
x*(O)=! . 

The answer for (u*,  x*) can be shown to agree with the one obtained by using the 
variational approach and solving a two-point boundary value problem given in 
Sect. 7.3. We leave the detail to the reader (Exercise 8.4). 

As mentioned in Remark 8.1, even if g(x, u, t )  is not smooth in u, the method 
of dynamic programming is still applicable. One example is the minimum-fuel 
control problem (Exercise 8.11). 

8.3 Discrete-Time Dynamic Programming 

We next consider discrete-time dynamic programming. The problem can be 
formulated as the following: 
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where it is understood, as in the continuous-time setting, that (k,, xkl),  where 
k, = k ,  ( {u j } ) ,  is in the time-space target M , ,  and that &EX for k, I k I k, . Also, 
the subscript 1 of k ,  always indicates that the terminal time k, is in the time 
target J ,  and remember that k, depends on the control sequence {u j } .  Finally, 
{UT}, {xt} ,  and k: will denote, respectively, an optimal control sequence, its 
corresponding optimal trajectory, and the (optimal) terminal time with initial 
time and state k ,  and x,. As in the continuous-time case, we define a value 
function 

where X k +  =f(xk, uk, k) and X I  = y  . 

verified (Exercise 8.8). 

Lemma 8.3 For each 1 2 k , ,  

The following so-called “discrete-time optimality principle” can be easily 

Hence, the procedure of discrete-time dynamic programming follows 
immediately (Exercise 8.8): 

Theorem 8.2 Let  xko = xo. Then 

wherexko+l=f(xk,,uk,), . . . 3 x k l = f ( X k l - l ~ u k l - l ) ~  

Remark 8.2 To carry out the procedure of discrete-time programming, we pick 
any arbitrary k, and carry out the minimization processes starting with 

min g(xkl, ukl, k l )  . 
‘ k c  

It is important to remember that when each minimum is taken, the previous 
minimum quantities must be included. At the end, we have a recurrence 
relationship on {xk}, k = k,, . . . , k , .  Suppose that g(xk, uk, k) is nonnegative for 
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each k .  Then the smallest k ,  such that k , € J ,  and xkl is in X ,  is denoted by k: ,  
and the trajectory x k = x : ,  k = k , ,  . . . k: ,  is an optimal trajectory. From { x k }  we 
can determine uk = u t .  Hence, ( {u t  i ,  {x; ), k = k , ,  . . . , k: ,  is a pair of optimal 
control sequence and trajectory of the optimal control problem. 

To illustrate the procedure, we consider the discrete linear regulator problem 
of minimizing 

where xk+ , = axk + bu,, a and b real, and x, = y o .  For convenience, we assume 
that the terminal time N is fixed. Otherwise, we follow the procedure outlined in 
Remark 8.2. The starting point is the trivial minimization process 

V ( N ,  xN)  = min 4 ( x i  + u i )  
U N  

It is clear that to attain the minimum, we have 

where h, =f. The second minimization process is 

min { +  ( x i -  + u i -  ,)+ V ( N ,  x N ) }  . 
' N -  I 

From Lemma 8.3, this quantity happens to be V ( N  - 1, xN- It is important to 
remember that V ( N ,  x N )  must be expressed in terms of u N P l  before the 
minimization is taken. That is, the second minimization process becomes: 

V ( N  - I ,  xN - ,) = min { $  (xi- + uN-  2 ,)+ h,(ax,- + bu,- ,)'} . 
' N -  I 

It is also clear that to attain the minimum. we have 

2abh, 
1 +2h2h ,  

1 +2b2 ha x N - l  

U N -  1 = - 

a 
XN = 

V ( N -  1, x , - , ) =h , x~ -  , where 

1 + a 2 + h 2  
*( l+bz)  ' N - 1  . 
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This result suggests that V ( N - j ,  . x ,~ - , )  is always a constant multiple of .xi.-j, 
and so we write 

1 V ( N - - j ,  ~ ~ - ~ ) = h ~ ~ ~ i - ~ ,  j =  1, . . . , N . 

Hence, the ( j  + 1)st minimization process of the dynamic programming method 
is 

and to attain the minimum, we have 

2abh,- 
1 + 2 h 2 h , _ l  

X N - ~ + l =  1 + 2 h 2 h , _  

X N - ,  -~ ~ u,-,= 

U 
XN -, ~ .~ 

v (N- j , xN- , )=h ,X i - ,  , 

fo r j=  1, . . . , N. In order to determine the optimal quantity V(0,  x,)=h,x;, we 
have to find h,. To do  so, we derive its recursive relationship as in the following. 

so that we have 

, j = l , .  . . , N , 1 + 2(u2  + b 2 ) h j -  I h . = 
2(1  + 2 h 2 h j - , )  

h -1 
0 - 2 .  

The optimal trajectory {xk} = (xz} can also be computed recursively using 

a 

1 +2h2h jP1  x N - j  x N - j +  1 = 
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and the optimal control sequence ( u k }  = [u ;  1 is now 

8.4 The Minimum Principle of Pontryagin 

We have now discussed the methods of continuous-time and discrete-time 
dynamic programming. Although these procedures arc analogous, the 
continuous-time setting involves solution of a first order nonlinear partial 
differential equation. A standard method is the so-called "method of character- 
istics" (see, for example, Courant and Hilbert (1  962)). I t  is, however, usually more 
preferable to solve an ordinary differential equation. This is indeed possible if we 
use the niinirnum principle of Pontryagin instead. These two methods for the 
continuous-time setting are very much related. In fact, under the additional 
assumption that cost functionals have continuous second partial derivatives 
with respect to t and the coordinates of x, we can derive Pontryagin's minimum 
principle using dynamic programming. 

Suppose that the Hamilton-Jacobi-Bellman equation (8.3) is satisfied. Then 
denoting 

we have, from (8.3), 
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and q ( t T ) = O  for some [TEJ?. Comparing with (7.11), we have q ( t ) = p * ( t ) .  
Furthermore. if we define the Hamiltonian 

then (8.4) is equivalent to 

H ( x * ,  u*, p*, t )  = min H ( x * ,  u. p* ,  t ) ,  to I t  I tT . 
U t  U ( 1 .  Xf(1) I  

This is just a simplified statement of the Pontryagin's minimum principle. We 
summarize this in the following: 

Theorem 8.3 A nrcwstrr-y condition jhr  the puir (u*, I*) to  .srrfi.sf:r 

p =  I;' - ( x * ,u *  , t )  1' p -  [ i , + ( x * , u * ,  t ) I T  

c7X ( X  

p(tT)=O ,for some t T E J r  , 

such thut 

H (I*, u*, p*, t )  = min H ( x * ,  u, p*, t )  
U E  0 ( 1 ,  X * ( 1 )  ) 

where to  5 t tT,  and the Hamiltonian H (x, 11, p ,  t) is defined in (8.9). 

In the above derivation using the dynamic programming procedure we have 
assuemd that g(x, u, t )  has continuous second partial derivatives with respect to 
the coordinates of x. A direct proof of this theorem and a much more general 
result is possible under much weaker conditions on g(x, u, t).  We postpone 
discussing the more general statement of Pontryagin's principle and its discrete- 
time analogue to Chap. IO. 
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Exercises 

6 8 . 1  Use the variational method discussed in Chap. 7 to solve the one- 
dimensional linear regulator problem 

1 2  
minimize - 1 (.Y' + u z ) d t  

2 0  
.-i = u 
x(O)= I , 

and verify that x*(I)=(e+e- ') /(e '+e- ') .  Then solve the problem 

1 '  
minimize - J" (xZ + u2 ) d t  

2 1  

?? = u 

x( 1 ) = (e + e  ' )/(eZ + e ' ) . 

Convince yourself of Lemma 8.1 by comparing the solutions of these two 
problems. 

?- 8.2 Prove Lemma 8.2. 
c). 8.3 Show that the Hamilton-Jacobi-Bellman equation for the linear regu- 

lator problem in Exercise 7.8 is 

and derive the matrix Riccati equation given in Exercise 7.8 by setting 

Supply the detail of the solution in the one-dimensional example of 
continuous-time dynamic programming in Sect. 8.2. 
Consider Riccati's equation with constant coefficients 

V ( t ,  x(t)) = f x T  L( t )x .  
8.4 

8.5 

. - i = a x 2 + h x + c ,  a # O  . 

Determine the parameter 2 (in terms of a, h and c) in making the change of 
variable x = i i / z  to obtain a second order linear equation 

z+uz+pz=o 

where u and f l  are constants in terms of a, h, and c. 
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8.6 

v 8.7 

8.8 
8.9 

Let a(t), b(t) and c( t )  be continuous functions. The first order equation 

i = a(t)x2 + b ( t ) x  + c( t )  

is called Riccati's equation. Suppose that some particular solution x 1  of 
this equation is known. Show that a general solution (containing one 
arbitrary constant) can be obtained through the change of variable 
x = ( l / z ) + x ,  where z is the solution of the first order linear equation 

i+ [ b ( t ) + 2 a ( t ) x 1 ] z + a ( t ) = 0  . 

Apply the continuous-time dynamic programming method to solve the 
linear servomechanism problem 

minimize-j [ ( x -  1 ) 2 + ~ 2 ] d t  

i= - x + u  

1 '  
20  

x(O)=O , 

and compare your answer with Exercise 7.7. 
Prove Lemma 8.3 and use it to derive Theorem 8.2. 
Use the discrete-time dynamic programming method to write a positive 
number r as a product of n positive numbers: r = IIl= r i  such that Zy= , v i  
is minimum. 
(Hint:  Let V,  be the minimum value of the sum Cy= ri. Then use Lemma 
8.3 to establish 

8.10 Apply Pontryagin's minimum principle to Exercises 7.7-9 to convince 
yourself that if the terminal time t ,  is fixed, X,=R", and the function 
g(x, u, t )  in the cost functional is differentiable with respect to u, then both 
the variational methods and Pontryagin's minimum principle give the 
same results. 
Use Pontryagin's minimum principle to solve the one-dimensional 
minimum-fuel problem 

minimize j lu(s) lds , 

U = { u :  u=const} , 

i = x + u ,  

8.1 1 

1 

ucu 0 I x(O)=O, x(l)= 1 . 



9. Minimum-Time Optimal Control Problems 

In Chap. 8 we derived a weaker version of Pontryagin’s minimum principle using 
the dynamic programming procedure. A rigorous proof of the general statement 
of the principle is tedious. Even in the minimum-time optimal control problem 
where the cost functional is simply ( t l  - to) ,  an easy proof of the principle is not 
available without using functional analysis. In this chapter we will study the 
minimum-time optimal control problem for a continuous-time linear system in 
some detail and derive the minimum principle for this setting. In order to give a 
rigorous and yet somewhat elegant treatment, it is necessary to use some 
terminology and results from measure theory and functional analysis. Our 
original intention of presenting an elementary treatment of the subject matter is 
maintained if the reader is willing to accept two existence results (namely: 
Lemma 9.1 and the last portion of the proof of Theorem 9.2), consider 
“measurable functions” as “piecewise continuous functions”, regard the “almost 
everywhere” notion as the weaker notion “everywhere with an exception of a 
finite number of points”, and assume a set E with positive measure to be a 
nonempty interval. 

9.1 Existence of the Optimal Control Function 

The minimum-time optimal control problem for a linear system we will consider 
can be stated as follows: 

t l  

minimize f 1 dt  = minimize ( t l  - t o )  

f = A ( t ) x + B ( t ) u  , 

x(to)=xo, x ( t , ) = x ,  7 

U € W  to u t w  

where the initial pair ( t o ,  xo) and the target position x1 are fixed, and the 
admissible class Wconsists of control functions u= [u ,  . . . u p l T  with ui measur- 
able on [ to ,  co) and luil< 1 almost everywhere, i =  1, . . . , p .  Clearly, t ,  is a 
function of u in the minimization process. 

In order to consider a nontrivial problem, we will always assume that the 
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state vector x can be brought from the initial position xo to the target position x1 
in a finite amount of time using a certain control function from W. Hence, the 
existence of the minimum time t: [that is, t: - to is the minimum value of the 
extrema1 problem (9. l ) ]  is trivial. The minimum-time optimal control problem 
we consider here is to study the existence, uniqueness, and characterization of a 
control function u* E W which will be called an optimal (minimum-time) control 
function, such that 

1 = A( t )x+ B(t)u*, to I t 5 tT , 

x ( t o ) = x o ,  x ( t T ) = x l  . 

To facilitate the study of this problem, we introduce the notation 

R, = j @(to, s)B(s)u(s)ds:  U E  W }  and L (9.3) 

1 

X , = @ ( t ,  t o ) [x0+R,]= @(t,  to)xo+ J@(t, s)B(s)u(s)ds: U E  W } i 10 

(9.4) 

where @(t ,  s) is the transition matrix of the linear system. We first note that these 
two sets have the following convenient properties. 

Lemma 9.1 For each t 2 to ,  R, and X ,  are both closed, bounded, and convex sets 
in R”. 

Since X ,  is an affine translate of R, in R”, it is sufficient to verify that R,  has the 
above mentioned properties. An elementary proof that R,  is closed in R“ is 
complicated. In order not to go into much detail, we apply a result from 
functional analysis. Let t 2 to be fixed. To prove that R ,  is closed and bounded, it 
is equivalent to show that it is compact. Since W is the unit ball in the product 
space L ,  [ to ,  t l ]  x . . . x L,[to, t l ]  of almost everywhere bounded functions, it 
is “w*-comEct” and convex by the Banach-Alaoglu theorem, and hence R , ,  the 
i m a g x W  under the transformation 

I 

K (u )=  S @(to ,  s)B(s)u(s)ds, U E  W , 
to 

(9.5) 

is a compact convex set in R”.-.. 
We are now ready to study the existence of the optimal control function u*. 

Theorem 9.1 There exists an optimal control function u* E W satisfying (9.2). 

From the definition of t : ,  there exists a sequence { t : }  that converges to t: 
from above such that 

I 
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for some U ~ E  W. The transition equation of (9.6) is 

t: 
x l = @ ( r : ,  t o ) x o +  { @ ( r : ,  s)B(s)uk(s)ds,  for k = l ,  2 , .  . . . 

1 0  

Let x: denote the solution of (9.6); that is, xt(t), r,<t_<t:, is the trajectory 
corresponding to uk.  It is easy to see that x: ( r : )+x ,  as k+ Wqndeed, using the 
notation 1.1 = ] * I Z  for the “length” of vectors (Remark 6.3), we have 

1x1 -x: ([?)I = 1.: ct:,-x: @:)I 
1 ;  

<I@([!, ro )xo -@( t : ,  t o ) x o l + l  I@(t:, S ) B ( S ) U k ( S ) d s  
1 0  

A 

+ j? I @  (r:  3 to)B(s)uk(s) I ds 
1: \ 

and this estimate tends to zero as k+ co, since @ ( r ,  t o )  is bounded and continuous 
on [ to ,  co) and each component of uk is bounded almost everywhere by 1 .  It is 
also clear that x:(t:)  E XI: where X,:  is defined by (9.4). Since X I :  is a closed set by 
Lemma 9.1, we may conclude that the target point x1 is in Xt: .  That is, 

t:  
x1 =m,(t:, to)+ j @(q, s)B(s)u*(s)ds 

10 

for some u* E W. This completcs the proof of the theorem 

9.2 The Bang-Bang Principle 

To study the characterization of the optimal control function u*, let us introduce 
the class of so-called bang-bang control functions defined by 

Wbb=(u=[uI . . . W: Iui(t)(= I almost everywhere, i = l ,  . . . , p }  
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and the corresponding subset 

i 

B , = { @ ( t ,  to)X,+ S @ ( t ,  S ) B ( S ) U ( S ) d S :  UE Whb) 
io 

of xi. 
The following result, which is usualy called the hang-bang principle, essen- 

tially says that if a target position can be reached by using some admissible 
control function from W at t = t ,  > t o ,  then it can also be reached by using a 
bang-bang control function u E W h h  at t = t ,  . 
Theorem 9.2 For any t > to ,  X ,  = B,.  

Since B, E Xi and X ,  = @ ( t ,  t o ) {  xo + R,} ,  it is sufficient to prove that for any 
Y E  R,, where t 2 to is fixed, there exists a bang-bang control function U " E  w h h  such 
that 

t 
<'  

t *h c, /. 
y =  J @ ( t o ,  s )B (~ ) r l ( s )d s  . 

io 

We consider the set 
i 

V= Vy={uE w: y =  j @ ( t o ,  s)B(s)u(s)ds)  
to 

and use the notion of extreme points of V. An extreme point ri of Vis a control 
function ri in V which cannot be written as a proper convex combination of 
functions in V, so that ri # tu l  + 3u2 where u l ,  u2 E V. It is sufficient to show that 
V contains at least one extreme point and that all extreme points of V are bang- 
bang control functions. Suppose that r i ~  Vis not a bang-bang control-function. 
Then there exist a set E of positive measure in Lie, t ]  and a n > O  such that 
Jli,(s))<l-&, S E E ,  for some component li, of ti. Let us consider the linear 
transformation K from W to R" defined in (9.5) and the subcollection Wi of 
control functions u= [u ,  . . . upIT in W where u,(s)=O for to  IS< t if j # i and 
u,(s) = 0 if s $ E ,  i = 1 . . . p .  Since W, is a "strip" in an infin 
space, K cannot be a one-to-one transformation Gf" 
there exists a nontrivial ti€ W, such that Ku=O. Hence, both r i ,  = r i + ~ U  and 
ri,=h-~tiarein Vso that t i = * ( r i ,  +i2)cannot beanextreme point of V. Hence, 
if we could prove the existence of an extreme point in V, then Theorem 9.2 is 
established. The proof of this fact is complicated without using results from 
functional analysis. We do not intend to go into detail, except by mentioning that 
the existence of an extreme point of V is a consequence of the Krein-Milman, 
Theorem [see, for example, Royden (1968) p. 2071 by noting that V= K ~ ( { y } )  
is a nonempty, closed, bounded, convex subset of W. 

As a consequence of Theorems 9.1, 2 we have the following result. 

Corollary 9.1 There exists an optimal control function uth in W,, that 
satisfies (9.2). 
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9.3 The Minimum Principle of Pontryagin 
for Minimum-Time Optimal Control Problems 

Our next goal is to obtain at least a partial characterization of uEb. Define 

y ( t ) = @ ( t o ,  t )x( t ) -xo 

and observe that x ( t )  E X ,  if and only if y ( t )  E R,. Noting that 0 E Rio and R, c R ,  
whenever s < t. we conclude that 

R,= u Rs 
i O ~ S 5 ,  

Since tT is the smallest t ,  such that y 1  = j ' ( f l ) E R , , , y l  must lie on the boundary 
dR,: of R,: whenever x1 = x ( t : ) ~ X , : .  I t  follows that if x1 EX,: then, since R,: is 
convex, y ,  must satisfy 

zTyl 2 z'y (9.7) 

for ally E R,: where is an outer normal of R,: at y l .  The outer normal z enables 
us to give the following characterization of uzb. 

Theorem 9.3 Let U * E  W be an optimal control function of the minimization 
problem (9.1) with minimum time tT in the sense that it satisfies (9.2). Then 

zT@ ( to ,  t )B( t )u*( t )  = max zTO ( t o ,  t )B( t )u ( t )  (9.8) 

almost everywhere on [ to ,  t:] for  some nonzero constant vector Z E  R". Further- 
more, ifeach component of zT@ ( to ,  t ) B  ( t )  is almost everywhere diflerent from zero, 
then the optimal control function u* is the bang-bang control function 
sgn{BT(t)@'(t0, t ) z } .  

Here and throughout, we use the notation sgn[ul . . . u,]'=[sgn u ,  
. . . sgn up]' where for a real number u, sgn v, called the signum function of u, is 
defined to be 1, 0, or - 1 if u > 0, u = 0 or u < 0, respectively. 

To prove this theorem, we suppose that u* E W is an optimal cotrol function 
but for-any nonzero vector z in R", 

U E  w 

zT@(tO, t)B(t)u*(t)< maxzT@(tO, t )u( t )  
U t  w 

on some set E c [ to ,  t:] with positive measure. Let z' be an outer normal to the 
boundary of R,: at the point y1 and ri satisfy 1 

zT@(tO,  t)B(t)B(t)= max zT@(tO,  t )B( t )u ( t )  
U E  w 
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almost everywhere on [ to ,  t;"]. Then we have 

1: 1: 

j zT@( tO ,  t )B( t )u*( t )d t  < J z T @ ( t O ,  t)B(t)ri(t)dt 
to 10 

or z'y, < zT$ where 

t t  
$= j @ ( t o ,  t)B(t)ri(t)dt 

to 

is in R t y ,  contradicting (9.7). Finally, it is not difficult to see that if each 
component of $@(to,  t )B( t )  is almost everywhere different from zero, then the 
optimal control function u* which satisfies (9.8) must be sgn{BT(t)aT(tO, t ) z }  
(Exercise 9.1). This completes the proof of the theorem. 

Remark 9.1 
of the following equation 

Ifwe define a vector-valued function q ( t )  to be the unique solution 

then we have q(t )= - Q T ( t 0 ,  t ) z  and so the optimal control function in Theorem 
9.3 is u*(t)= -sgn{B*(t)q(t)} almost everywhere on [ to ,  t:]. Furthermore, if we 
define the Hamiltonian to be 

H ( x ,  u, q, t )= 1 + q T ( r ) [ A ( t ) x + B ( t ) u ]  , (9.10) 

then (9.8) can be rewritten as 

H ( x * ,  u*, q, t ) =  minH(x*, u, q, t )  
U t  w 

(9.1 1) 

almost everywhere on [ to ,  t ; " ] .  Hence, Theorem 9.3 is, in fact, a minimum 
principle of Pontryagin. 

We demonstrate Theorem 9.3 with the following example 

minimize t 
U € W  

(9.12) 

where the admissible class W consists of control functions u which are 
measurable on [0, a) with IuI I 1 almost everywhere. 
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Fig. 9.1 

Let u* be an optimal control function. Then from Theorem 9.3 we have 

where q1 ( t )  = c1 and q2( t )  = - c1  t + c 2  for some constants c1 and c2 by using (9.8). 
We first conclude that c1 # 0. This is clear since c1 = O  and z # 0 imply that c2 # 0 
so that u* would be identically equal to 1 or - 1, which cannot bring x from the 
origin to the target (3, 1). Now, since c1  fO ,  q2  has exactly one zero at 
T = c2/c1. That is, u* changes its sign exactly once at t = z. This "break-point'' is 
usually called the switching time of u*, and it is essential since u* cannot be 
identically 1 or - 1. 

If u*(t)= 1 for O<t<r, then x1 = f t 2  and x 2 = t ,  which is a (half) parabola in 
the first quadrant of the so-called state-phase plane. If u*(t)= - 1 for O s t  < T ,  

then this portion of the trajectory is in the third quadrant of this state phase 
plane (Fig. 9.1). Since our target position (3, 1 )  is in the first quadrant and we are 
interested in minimum-time control, i t  is clear that we must pick u*(t)= 1 for 
0 < t < t switching to u* ( t )  = - 1 at t = T .  We simply solve the two-point boundary 
value problem 

It is not difficult to show that the solution exists if and only if ~ = , , h / 2  and 
t: =a- 1, assuming that O s z s r ? .  Hence, the optimal control is given by 

and the minimum time is t:=J14-1. 
I 

I 
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9.4 Normal Systems 

We next consider the special case where the linear system is time-invariant and 
described by 

(9.13) 

A and B being n x n and n x p constant matrices, respectively. From Theorem 9.3, 
the optimal control function u* of this problem is given by 

for some z # 0 in R". For u* to be unique, it is essential that no component of the 
vector-valued signum function in (9.14) vanishes on interval. We need the 
following definition. 

Definition 9.1 The continuous-time time-invariant linear system (9.13) is said 
to be normal if for every nonzero constant vector Z E  R" every component of the 
vector-valued function z'exp [ - ( t  - t,)A] B has at most a finite number of 
zeros. 

We remark that if the linear system is not normal, then for each nonzero z, at 
least one component of zTexp[-((t - t , ) A ] B  is identically zero, so that the same 
component of u* cannot be determined by using (9.8). In this case, we have a so- 
called "singular optimal control" problem. 

For a normal linear system, we have the following. 

Theorem 9.4 Let B =  [b, . . . bp]. Then the linear system (9.13) is normal i f  and 
only ifeach of the matrices MAh,= [bjAbj . . . A"-'b,], j =  1, . . . , p ,  is offull rank. 

If the linear system (9.13) is not normal, then there exist z # 0 and j ,  1 I j  I p ,  
such that the function f(t)=z'exp[-(t - to)A]b, has infinitely many zeros on 
[ to ,  t l ]  and must be identically zero, being an analytic function. Thus, we have 

, f (k ) ( t )  = ( - 1 )kzTAk e -(' ~ '0) 6, = 0 

for all t E [ t o ,  tl], k = O ,  1, .  . . , n -  1. In particular,,f(k)(t,)=(-l)kzTAkbj=O for 
k=O, 1, . . . a -  1, or, equivalently ZTMAh, =o. That is, M ~ ~ ,  is row dependent 
and so is not of full rank. 

Conversely, suppose that the matrix MAb, is not of full rank for some j ,  
1 I j S p .  Then there exists a nonzero vector Z E  [w" such that ZTMAbJ =O, or 

zTb.=zTAb.= . . , =zTAn-'bj=O 

Then by the Cayley-Hamilton Theorem, we have z'Akb, = 0 for all k 2 0. That is, 
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f ' k ) ( t , )  = 0 for k = 0, 1, . . . . Since .f ( t )  is analytic for all t ,  it is identically zero, so 
that the linear system is not normal. This completes the proof of the theorem. 

It is perhaps interesting to relate normality to controllability as follows. 

Corollary 9.2 
system is normal if and only if it is completely controllable. 

Let the control matrix B in (9.13) have a single column. Then this 

For normal systems, we have the following uniqueness theorem 

Theorem 9.5 If the continuous-time time-invuriunt linear system (9.13) is normal 
then the minimum-time optimal control junction u* is unique. 

We only prove the case when the matrix B has a single column and leave the 
general case to the reader (Exercise 9.7). Suppose that UT and uT are two optimal 
control functions and x: ( t )  and xT( t )  are their corresponding (optimal) trajec- 
tories. Since the target position is the same for both control functions, we have 

1: 

j e p c r p ' o ) " ~ [ u T ( t ) - u T ( t ) ] d t  = O  . 
1 0  

Let z1 be a nonzero constant vector in R" so chosen that 

uT( T ) =  sgn{ zTep(lpfo)AB' i 

almost everywhere on [ t o ,  t:]. Then, since luTl I I ,  we must have 

[UT ( t )  - u T ( t ) l 2  0 T - ( t - t o ) A B  
z1 e 

so that multiplying zT to the left of (9.15) gives 

z;e-(l-fo)AB u* t c 1 (  ) -uT( t ) l=O 

(9.15) 

(9.16) 

almost everywhere on [ t o ,  t:]. Since the linear system is normal, the scalar- 
valued function zT exp[ - ( t  - to)  A]B has at most a finite number of zeros so that 
uT(t) -  uT(t) = 0 almost everywhere on [ t o ,  t:], establishing the uniqueness result. 

When B has a single column, we have the following result that governs the 
numbers of switching times. 

Theorem 9.6 I f  the linear system (9.13) is a single-input normal continuous-time 
time-invariant system, then its minimum-time optimal control function u* has a 
finite number of switching times. Furthermore, i fall  the eigenvalues of the system 
matrix A are real, then the number of switching times of u* is at most n-  1. 

Let z f O  and u*=sgn{zTexp[-(t-t,)A]B}. Since the analytic function 
zTexp[-(t-to)A]B has only finitely many zeros on [ to ,  r:] ,  u* has a finite 
number of switching times. 

Suppose that all the eigenvalues I., , . . . , I., of A are real. Let us first assume 
that they are distinct. Then we may write A = Pdiag[A,, . . . , E.,]P-' for some 
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almost everywhere on [ t o ,  t : ]  for some vector-valued measurable function 
y ,  where each component of y is almost everywhere different from .zero and 
the admissible class Wconsists of vector-valued functions u= [ u ,  . . . up]' 
with each u, measurable and l u , J l l  almost everywhere, then u*(t)  

Let W be the class of all measurable functions u with l u l ~ l .  Solve the 
minimum-time optimal control problem: 

minimize t ,  

= sgn { y ( t ) }  almost everywhere. - lhAll c, \ y, l i  i '2, A 17 
9.2 

9.3 Prove that the minimum-time optimal control function u* for the damped 
harmonic oscillator discussed in Exercise 7.1 with a' =4wg is given by 

u*(t) = sgn {e'"2(zlt + z 2 )  1 
where z = [ z ,  z2]' is an outer normal vector discussed in Theorem 9.3. 

9.4 When the system is nonlinear, the corresponding minimum-time optimal 
control problem may not have a bang-bang solution. This can be seen in the 
following example. Consider the nonlinear system 

i = u - u ' .  

Show that the minimum-time optimal control using measurable functions u 
with JuJ I 1 taking x from x,=O to x1 = 1 is the unique solution u* -3. 
Verify that the two-dimensional system described by (9.12) is normal and 
the eigenvalues of the system matrix are all real and distinct so that by 
Theorem 9.6 the (unique) optimal control function has at most one 
switching time. 

9.6 Determine the normality for the linear system with the system matrix A and 
control matrix B given by 

9.5 

Also, verify that the number of switching times on [IO, 00) for the 
corresponding optimal control function u* is at most 2 by expressing u* to 
be the signum function (9.14). 
Prove Theorem 9.5 when B is an n x p arbitrary constant matrix. 9.7 
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9.8 Show that if A = P  diag[i,, . . . , A,,]P-' where P is a nonsingular con- 
stant matrix. then 

9.9 Use mathematical induction to prove that the function 

where p l ,  . . . , p k  are distinct real numbers, each c j ( t )  is a polynomial of 
degree mj-  1, and j =  1, . . . , k ,  has at most m ,  + . . . + m , -  I ,  positive 
zeros. 



10. Notes and References 

In our attempt to introduce the state-space approach to control theory, we have 
only included what we believe to be the most basic topics that give the reader a 
good preparation for further investigation into other areas of the subject. Our 
treatment has been elementary and yet mathematically rigorous. There are many 
texts in the literature that are written for similar but different purposes. For 
linear system theory, we refer the reader to Balakrishnan (l983), Brockett (1970), 
Chen ( I  984), Kailath (1980), Padulo and Arbib (1974), Timothy and Bona (1968), 
and Zadeh and Desoer (1979). For further investigation into optimal control 
theory, the reader is referred to Bellman (1962), Fleming and Rishel (1975), 
Knowles (1981), Lee and Markus (1967), Macki and Strauss (1982), and 
Pontryagin et al. (1962). It is an impossible task to list all other topics that we 
have not covered in this treatise. We only include the following related ones 
without going into details, and refer the interested reader to the appropriate 
literature. 

10.1 Reachability and Constructibility 

Recall that a linear system is said to be controllable if starting from any position 
xo in [w” the state vector can be brought to the origin by a certain control function 
in a finite amount of time (Definition 3.1). If the reverse process can be 
performed, the linear system is said to be reachable. In other words, the system is 
said to be reachable, if for any given target yo  in R”, a control function can be 
chosen to bring the state vector from the origin to yo  within a finite amount of 
time. Just as observability is “dual” to controllability, the “duality” of reac- 
hability is constructibility. More precisely, a continuous-time linear system is said 
to be (completely) constructible over the time interval [to, tl], if for any given 
input function u(t), to ~t I t , ,  the terminal state x ( t l )  is uniquely determined by 
the input-output pair (u(t), o( t ) ) ,  to ~t ~ t ,  . Of course, an analogous definition 
can easily be formulated for discrete-time linear systems. See Kailath (1980) and 
the references therein for more detail. 
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10.2 Differential Controllability 

A linear system with continuous-time state-space description 

i = A ( t ) x + B ( t ) u  

U =  C ( t ) x + D ( t ) u  

is said to be diferentially (completely) controllable at time to ,  if starting from any 
position xo in R", the state vector x at to can be brought to any other position x1 
in R" in an arbitrarily small amount of time by certain control function u. Assume 
that A ( t )  and B( t )  are respectively n x n and n x p matrices with infinitely 
differentiable entries, and set 

d 
dt 

Mo( t )=B( t ) ,  M k + i ( t ) = - A ( t ) M k ( t ) + ~ M k ( t ) ,  k = O ,  1, . . . , 

and 

M A B ( t ) = [ M O ( t )  M , ( t )  . . . M " _ , ( t )  . . . ] . 

Then this system is differentially completely controllable at to if and only if the 
matrix M A B ( t O )  has rank n (for more detail, see Chen (1984)). 

10.3 State Reconstruction and Observers 

If a continuous-time linear system described by 

X = A ( t ) x + B ( t ) u  

u = C(t)x 

is observable, we have seen that the initial state x(to) and hence the state vector 
x( t ) ,  t> to ,  can be (uniquely) constructed, at least theoretically, from the 
information on the input-output pair (u(T) ,  u ( T ) )  for t ,<r<t. In fact, from 
Chap. 4, we have: 

X(t)=@(t, t,)P;' @'(r, to )cT(r )u ( r )dr  

1 t r  

- s s @'(T, ~,)C'(T)C(T)@)(T, s)  B(s)u(s)  ds dr , 
20 to 

where P ,  is given in (4.2). However, if the system is not observable, so that P ,  is 
singular, we need an observer to give an estimate P of x. One usually requires that 
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lZ(t)-x(t)l+O as c+ + co. An observer is an associated system defined by 

.i! = A ( t )Z  + B(t)u  + G(t)  [ V  - C(t )Z ]  

a(t,)=a, 

and the problem is to “design” the gain matrix G(t )  so that the estimation satisfies 
the specification. Let y =  x-i? be the error. Then combining the observer and the 
original linear system description, we have 

3 =i -2 = A(t )y-  G( t )  [0- C(t)i?] 

= A ( t ) y - G ( t )  [ C ( t ) x - C ( t ) i ]  

= [ A ( t ) - G ( t ) C ( t ) l y  ’ 

This is a new free linear system. Let YG(t, s) be its transition matrix. By 
Theorem 6.3, we can conclude that the estimation satisfies the specification 
(i.e. lZ(t)-x(t)I-+O as t+ + co) if and only if 

for all t.s2to,provided that thematrix A(t)-G(t)C(t)is bounded for all t 2 t o .  
This is a specification on the design of the gain matrix G(t). For time-invariant 
systems, another specification is to choose G such that all the eigenvalues of 
A - GC lie in the left (open) half complex plane (Theorem 6.2j. If the original 
system is already observable, the estimation could improve its exponent on 
exponential stability. Indeed, it is proved in Wonham (1967) and O’Reilly (1983) 
that a gain matrix G exists such that the matrix A -GC has arbitrarily assigned 
eigenvalues if and only if the observahility matrix N, ,  is of full rank. 

In some applications it is conceivable that the dimension n of the state vector 
xis  very large. Hence, it is important to construct an estimator Z with fewer state 
variables. The associated system that defines the estimator with the minimum 
number of equations is called a minimal-order observer. It is known that the 
dimension of the minimal-order observer is at most n- q (cf. Luenberger (1964) 
and O’Reilly ( I  983)). 

10.4 The Kalman Canonical Decomposition 

The decomposition described in Theorem 5.1 was first considered in Gilbert 
(1963) where the eigenvalues of the system matrix were assumed to be distinct. A 
generalization to time-varying systems was studied in Kalman (1962, 1963) and 
Weiss (1969). However, we would like to point out again that as the example 
described by (5.3) indicates, there is no guarantee that the subsystems 9, and 
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are, respectively, completely controllable and observable, although we have 
arrived at the desired decomposed form. In fact, a unitary transformation cannot 
change the situation and a more general nonsingular transformation may be 
required. 

The essential idea initiated in Kalman (1962, 1963) is to utilize the fact that 
the intersection of the null space No = vNcA of NcA and sp MAE is invariant under 
A. To carry out this idea in more detail, the decomposition transformation 
matrix was formed in Sun (1984) by using certain basis of VI 0 . . . 0 V4 = iw" 
as columns, with VI =sp MA,nNo, V2=sp MA,nRo, V3=NcnNo, and 
V4 = NcnRo, where N,@p MA, = ROO No = R". We note, however, that the 
invariance of Vl under A alone does not guarantee the complete controllability of 
the subsystem Y1. This can be seen in the following example. Let 

so that 

MAE= [ 8 p i ]  
111 

NcA= [ [ i ]  
Nc={O} and 

By choosing V2 =sp{ [0 0 l]', [0 1 l]'}, we obtain the transformation matrix 

G =  [ SS;] 
so that 

I t  is easy to see that the subsystem Lf1 is neither controllable nor observable 
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although VI is the intersection of the controllable subspace sp MAB and No (for 
more detail, see Chen and Chui (1986)). 

10.5 Minimal Realization 

If the system, control, and observation matrices of a state-space description of a 
time-invariant linear system are given, the transfer function of the system can 
easily be calculated by using (5.1 I ) .  The inverse of this problem is much more 
important, and many methods are available to estimate the impulse responses 
(6.23) or (6.29), and hence the transfer functions by using Laplace transform or z- 
transform, respectively. This problem which is known as the realization problem 
obviously does not have unique solutions. One would usually prefer, however, to 
determine a state-space description with the lowest dimensions. The solution of 
this so-called minimal realizution problem is indeed “unique” (up to a similar 
transformation) according to Kalman (1963), if it exists; and the existence is 
guaranteed provided that the time-invariant linear system is both completely 
controllable and observable (Silverman (1 97 1)). This important problem will be 
further investigated in a forthcoming monograph by the present authors. 

10.6 Stability of Nonlinear Systems 

We have already considered stability of a free linear system described by 
f = A ( t ) x  where A ( t )  is an n x n matrix with continuous entries. More generally, a 
free system may have a possibly nonlinear description: 

X = f ( x ,  t )  (10.1) 

wherefis a vector-valued function defined on Q x J ,  with Q c Iw” and J = [to, 00). 
In applications,fmust be assumed to be smooth enough that (10.1) with any 
initial condition has a unique solution. A point x, in Q is called an equilibrium 
point (or state) if equation (10.1) with initial state x ( t , ) = x ,  has the unique 
solution x ( t )  = x, for all t 2 t o .  Hence, any equilibrium point must satisfy the 
equationf(x,, t )=Oforal l t2to.  By thechangeofvariabley(x, t ) = f ( x + x , ,  t),it 
is sufficient to consider the equilibrium point to be x, =0, and of course, we must 
assume that 0 is in the interior of Q. It is clear that the stability definitions in 
Chap. 6 are valid for this more general and possibly nonlinear situation. In the 
study of stability of nonlinear systems, the main tool is the so-called Lyapunou 
function. 
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Let V (x, t )  be a scalar-valued continuous function in Q x J such that each of 
the first partial derivatives 

av av av 
ax ,  ax,  ’ at 

~ _ _ _ _  ) . . .  

is also continuous in Q x J .  We say that V ( x ,  t )  is a Lyapunov function, if it 
satisfies the following conditions throughout Q x J :  

i) V(0 ,  t)=O for all t 2 t o  . 
ii) V ( x , t ) > O  for all x#O and t 2 t o  , and 

iii) (dV/dt)<O for all x#O and t> to  . 

Here, the (total) derivative of V ( x ,  t )  is given by 

g=(g)7.f+i.=(i.) av av f ( x ,  t)+x av 
( 1  0.2) 

The famous Lyapunov Theorem says that i f a  Lyapunov,function V(x, t )  exists, 
then the free system described by (10.1) is asymptotically stable about 0; that is, 
there exists a 6 > 0  such that whenever lx(to)1<6, Ix(t)I-O as t++cO.  

This local stability result can be made global if V (x, t )  satisfies the additional 
condition 

iv) V ( x ,  t)+cO as (xI-00. 

(This ‘‘limit’’ means that for any positive number MI,  there exists another 
positive number M,, such that whenever Ix(t)I 2 M2 we have V ( x ,  t )  2 MI for the 
same values of t.) The stronger statement of Lyapunov’s theorem is that i f a  
Lyapunov function V (x, t )  exists and satisfies (iv), then any state x described by 
(10.1) must tend to 0 as t-+ + 03 (independent o f the  initial state). 

The relation of the Lyapunov function and the differential equation (10.1) is 
given by (iii) using (10.2). 

There is also a Lyapunov instability theorem which states that ifthere exists a 
scalar-valued continuous function U (x, t )  on Q x J such that all its first partial 
derivatives are also continuous on Q x J ,  and that U (x, t )  satisJies 

i) U(O,t)=Ofor all t > t o  , 
ii) there exists a sequence xk # O  in Q that tends to 0 such that U ( x k ,  t )  > O  for 

all t E J and all k,  and 
iii) (dU (x, t ) / d t ) = ( d U / d ~ ) ~ f ( x ,  t)+(aU/dt)>Ofor t 2 t o  all x in Q that are 

sujliciently close to but diflerent from 0, 

then the system described by (10.1) is unstable about 0. 
For non-free systems, that is, those described by 

f =f (x ,  u, t )  (1 0.3) 
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where u is the control function, an analogous (but slightly more complicated) 
stability result of Lyapunov can be formulated. For more details in this direction, 
we refer the reader to Lefschetz (1965a, 1965b). 

10.7 Stabilization 

Let us return to linear systems. Suppose that the free linear system f=  A ( t ) x  is 
unstable and we have a state-space description with the control equation 
f = A ( t ) x + B ( t ) u .  One method to stabilize the free system is to introduce a 
certain linear feedback: 

U =  K ( t ) x  , 

such that the “free” linear system 

f = [ A  ( t )  + B(t)  K ( t )  ] x 

is stable. For time-invariant systems, the following result is useful in stabilization 
(Willems and Miller (1971), and Wonham (1967, 1974)): 

There exists a feedback matrix K ,  such that the eigenvalues of the matrix 
A - BK can be arbitrarily assigned. ifand only ifthe controllability matrix MAB is 
offull rank. 

10.8 Matrix Riccati Equations 

In solving the linear regulator and servomechanism problems (Exercises 7.8, 9), 
we have to solve the matrix Riccati equation 

L(t) = - L ( t )  A ( t )  - A  T ( t ) L ( t )  + L ( t )  B( t )  R ( t )  BT( t )L( t )  - Q(t),  to I t S t ,  , 

L(t , )  = s 
in order to obtain a linear feedback control function. Here, t ,  is fixed and S a 
constant matrix which may be zero. To solve this terminal value problem of a 
nonlinear matrix differential equation, we could instead solve the initial value 
problem 

A ( t )  -B( t )R- ’ ( t )BT( t )  [:I=[ -Q( t )  - A T ( t )  
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and obtain L(t)  using L = N M - ' .  Indeed, it is routine to check that if 

KI 
satisfies the initial value problem and M is invertible, then L = N M P 1  solves the 
above matrix Riccati equation. That M is actually invertible follows by 
observing that M ( t ) = @ ( t ,  t l )  where @(t,  z) is the transition matrix of the linear 
system 

h ? = [ A ( t ) - B ( t ) R - ' ( t ) B ? ' ( t ) L ( t ) ]  M 

Note also that N ( t ) = L ( t ) @ ( t ,  t , )  so that L= N M - ' .  For more detail on this 
subject we refer the interested reader to Brockett (1970). 

10.9 Pontryagin's Maximum Principle 

The minimum principle of Pontryagin that we discussed in Chap. 8 was called 
the maximum principle in the original book of Pontryagin et al. (1962). Of 
course, a simple sign change in the costate vector p changes minimum back to 
maximum, namely: 

min H ( x ,  u, p ,  t )  = - max H (x, u, - p ,  t )  
t r  T 

(cf. (8.9)). In a more general setting, consider an optimal control problem in which 
the continuous-time system is described by 

f = f ( x ,  u, t),  t E J ,  
x ( t 0 )  = xo 

where x E R", u E Rp with p 5 n, and f is a continuously differentiable vector- 
valued function. The initial time and position to E J and xo respectively are both 
given, and the problem is to bring the state vector x from xo to the target position 
x, EX, with terminal time t ,  E J , ,  by using some admissible control function u, 
so that the cost functional 

F(u) = f g(x, U, t )  dt 
t l  

to 

is minimized. Here, X ,  and J ,  are prescribed closed subsets of R" and J ,  
respectively, and the admissible class of control functions is 

W = ( U E W :  u, measurable and lu,l< 1 almost everywhere, i = l ,  . . . , p }  . 

For technical reasons, the function g(x, u, t )  is assumed to be continuously 
differentiable with respect to each component of x. Let us define the Hamiltonian 

H ( x ,  u ,p ,  P O ?  t ) = p o g ( x ,  4 t ) + P T f ( X ,  4 t )  
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and set 

M (x, p ,  P o ,  t )  = max H (x, u, P, P o ,  t )  . 
U E  w 

Then, Pontryagin's maximum principle can be stated as follows (Lee and 
Markus (1967), Knowles (1981), and Pontryagin et a1 (1962)): Ifu* is an optimal 
control function with corresponding trajectory x* and terminal time t l ,  then there 
exist nonpositive constant p o  and u vector-valued continuous function p ( t )  
= [ p l ( t ) .  . . p,,(t)lT such that 

where to<t<tT , 

ii) H ( x * , u * , p , p o , t ) = M ( x * , p , p o ,  t), t o I t < t T  , and 
I 

ag 
at iii) M (x* ,p ,  p o ,  t )= (x*(s), u*(s), s)+po-  (x*(s), u*(s), s) 

1 :  

Note that M ( x * , p ,  p o ,  tT)=O. 

where the system equation is 
In the discrete-time setting, let us discuss an analogous control problem 

Here, for each k = 0, . . . , N - 1 ,  xk E R", uk E RP with p s n and f k  is a continuously 
differentiable vector-valued function. Suppose that each x k  s R", k = 0, 
1, . . . , N ,  and U k  c Rp, k = 0,1, . . . , N - 1 .  Then the optimal control problem is 
to find a sequence {uk} of admissible control functions and a corresponding 
sequence { x k }  of trajectories such that a given functional F ( x N ) ,  such as the 
Pontryagin function (Sect. 7.1), say, is to be maximized, subject to the 
constraints u k e U k ,  k = O ,  1 , .  . . , N - I ,  and xkEXk, k = O ,  1,. . . , N .  

A set A in R" is called an afine set if [ (1 - A)x + Ay] E A for every x, y E A and 
2 E R', and the smallest affine set containing a set H is called the ufine hull of H ,  
denoted by aff H .  The relative interior of a convex set C in R" is defined to be 

ri C={xEaff C :  (x+&S)n(aff C ) c C  for some E > O }  

where S is the unit ball )xI2 I 1 in R". Let X E  X G R". A closed convex cone C is 
called a derived cone of X at x if for any collection of vectors p ,  , . . . , Pk in ri C, 
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there exists a neighborhood B of the origin relative to rW: and a C’ map m: B - i X ,  
satisfying 

k 
m(z)=x+ zipi+o(t) ,  as z+O , 

i =  1 

where z=[zl, . . . , z , l T ~ B .  The discrete-time Pontryagin maximum principle 
can be stated as follows (Wonham (1968)): In  the above problem, let V,(x) 
=fk (x ,  U,) he conuex for every x E R”, R = 0, 1,  . . . , N - 1. Let the pair { uf }, {xf  } 
he an optimal solution of the control problem and C,  a derived cone of X ,  at x:, 
k = O ,  1, . . . , N. Then there exist a number p 2 0 ,  and vectors p , ,  q,, k = O ,  
1 , .  . . , N, such that 

T 

i) p , = r x ( x z , u : ) ]  ax p k + l - q k ,  k = O ,  1 , .  . . , N-1, 

/ *  ’10.10 Optimal Control of Distributed Parameter Systems 

In practice, a great variety of control systems can be described by a partial 
differential equation 

where tis the time variable restricted to [ to ,  t l ]  c J ,  x =  [ x l  . . . x,IT a point in a 
region X ,  z= [zl (x, t )  . . . z,(x, t ) l T  restricted to a region Z with each z i ( x ,  t )  
being a continuously differentiable function with respect to both x and t ,  
u = [ u , ( t ) .  . . u,(t)lT, u = [ u , ( x ) .  . . u,(x)IT,  w = [ w , ( x ,  t ) .  . . w,(x,  t ) l T  (r+s 
+ h I n)  are vector-valued control functions belonging to closed bounded subsets 
(called the admissible sets) U ,  V, W, respectively, andf= [fl . . . f , ]  is a vector- 
valued function. Such a control system governed by a partial differential 
equation is called a distributed parameter system. Suppose that the boundary- 
initial conditions for the vector-valued function z are given by z(a, t)=$’(t), 
z(b, t )  = 4*(t) and z(x, t o )  = I&), where a, b are constant vectors such that 
a l x i b  and d1, cPZ and t+b ate known vector-valued functions. The optimal 
control problem described by the above system and boundary-initial conditions 
is to find a triple (u*, u*, w * )  of control functions such that when all the 
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supplementary constraints imposed on the system as well as all the boundary- 
initial conditions are satisfied, a given cost functional 

is minimized, where the terminal time t ,  can be either free or fixed. 
Similar to the optimal control theory of systems governed by ordinary 

differential equations, we also have Pontryagin's maximum principle for certain 
specific distributed parameter systems. The following simple example is given in 
Butkouskiy (1969). Consider the system described by 

) --=f (& - 3-3 w, x, t 
?2Z ciz a2 

ax at (7.Y at 

where ZEZ=R", t E [ O , r , ] ,  and x ~ [ O , h ]  with fixed values o f t ,  and h. The 
admissible set W of control functions consists of all such vector-valued functions 
w ( x ,  t )= [wl (x, t )  . . . w,(x, t ) ]  ' where each wi(x ,  t )  is piecewise continuous and 
bounded by a function defined on [0, b] x [0, t , ]  with values in some convex 
closed region in Rp,  p s n .  The boundary-initial conditions for the function 2 is 
given by z(0, r )  = 4(t) and z(x, 0) = t,h(.x). The cost functional to be minimized is 
given by the Pontryagin function 

F = c'z(h, t 1 ) , 

where c is a constant n-vector. 

control problem, we introduce the Hamiltonian function 
In order to formulate Pontryagin's maximum principle for the above optimal 

where p =  [p,(x, t) . . . p n ( x ,  t)]' is determined by 

d 2 p T  dH d dH d dH 
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Then Pontryagin’s maximum principle can be stated as follows: I fw*(x ,  t )  is an 
optimal function and z*(x,  t )  and p*(x ,  t )  are the corresponding optimal vector- 
valued functions defined as  above satisfying (1) and (2), then 

az* az* ( ax at 
H ~ * , - , - , w * , p * , x , t  

almost everywhere on [0, b ]  x [0, t l ] .  
The optimal control theory of distributed parameter systems is a rapidly 

developing field. The interested reader is referred to Ahmed and Teo (1981), 
Butkouskiy (1969, 1983), and Lions (1971). 

10.1 1 Stochastic Optimal Control 

Many control systems occurring in practice are affected by certain random 
disturbances, called noises, which we have ignored in the study of (deterministic) 
optimal control problems in this book. Stochastic optimal control theory deals 
with systems in which random disturbances are also taken into consideration. 
One of the typical stochastic optimal control problems is the linear regulator 
problem in which the system and observation equations are given by the 
stochastic differential equations 

~ i < =  [ ~ ( t ) <  + ~ ( t ) u l  rlt + r ( t )  L ~ W ,  

dq = C ( t )  < Lit + dw,, 
t , < t l t ,  , 

and the cost functional to be minimized over an admissible class of control 
functions is 

F ( u ) = E  f [ < T Q ( t ) < + u r R ( t ) ~ ] d t  . i:: 1 
Here the initial state of the system is a Gaussian random vector <(to), w 1  and w 2  
are independent standard Brownian motions with w 2  independent of t ( t o ) ,  the 
data vector q ( t )  for t o i t i t , ,  t ,  being a fixed terminal time, is known with 
q(O)=O, the matrices A ( t ) ,  B(t),  C( t ) ,  r ( t ) ,  Q ( t )  and R(t )  are given deterministic 
matrices of appropriate dimensions with Q ( f )  being nonnegative definite sym- 
metric and R ( t )  positive definite symmetric, E is the expectation operator, and 
the admissible class of control functions consists of Bore1 measurable functions 
from I =  [ t o ,  t l ]  x RP into some closed subet U of I .  

Suppose that the control function has partial knowledge of the system states. 
By this, we mean that the control function u is a linear function of the data rather 
than the state vector (in the latter case the control function is called a linear 
,feedback). For such a linear regulator problem, we have the following separation 
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principle which is one of the most useful results in stochastic optimal control 
theory and shows essentially that the “partially observed” linear regulator 
problem can be split into two parts: the first is an optimal estimate for the system 
state using a Kalman j l ter ,  and the second a “completely observed” linear 
regulator problem whose solution is given by a’linear feedback control function. 
The separation principle can be stated as follows (Wonham (1968), Fleming and 
Rishel(1975), Davis (1977), and Kushner (1971)): An optimal controlfunction,for 
the above partially observed linear regulator problem is given by 

u*= -R-1  ( t )BT(t)K(t)5^ 2 

where E is an optimal estimate of 5 from the data (q: to ~t I t ,  }, generated by the 
stochastic diferential equation (which induces the standard continuous-time 
Kalman jilter): 

dE= [ A  ( t ) f+ B(t )u*]  d t  + H ( t )  Cdq- C ( t )  f d t ]  

5^(to)=E(k(toN 

with H( t )=P( t )CT( t )  and K ( t )  being the unique solution of the matrix Riccati 
equation 

R ( t )  = K ( t )B(t)  R - ( t )BT( t )K  ( t )  - K ( t )  A ( t )  - A T ( t )  K ( t )  - Q(t),  to  I t I t 

K( t , )=O 9 

and P( t )  being the unique solution o f t h e  matrix Riccati equation 

P ( t ) =  A( t )P( t )+P( t )AT( t )+  r(t)rT(t)--(t)cT(t)c(t)P(t) 

P(t0) = Var ( W o ) )  ’ 
The theory of Kalman filtering is an important topic in linear systems and 
optimal control theory, and as mentioned above, the Kalman filtering process is 
sometimes needed in stochastic optimal control theory. Discrete-time (or digital) 
Kalman filter theory and its applications are further investigated in Chui and 
Chen (1987). 
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Answers and Hints to Exercises 

Chapter 1 

1.2 a and b are arbitrary and c=O. 
1.3 Since a, f l ,  7 ,  and 6 can be arbitrarily chosen as long as aS-py#O, the 

matrices 

1 
C =  [S -Dl are not unique. 

crb - By  

1.4 Let the minimum polynomial of A be p ( i ) = p o 3 . " + p 1 E . " - '  + . . . + p n  with 
p o = l .  Then a j = p j ,  j = O ,  1 , .  . . , n. If D # O ,  then m=n and b,=CA'-'B 
+ p l C A j - 2 B +  . . . +pi- ,CAB+pj- ,CB+pjD,  j = O ,  1 , .  . . , n. If D=O, 
then m=n-  1 and b,=CA'B+p,  CAJ- 'B+  . . . + p j C B ,  j = O ,  1,. . . , 
n-  1. 
(a) Let x l = u l ,  x z = u ; ,  xj=u2, x4=u; and x=[x, 1.5 

r o  1 0 0 0 0  

r + 
a2 B 2  

x 4 I T .  Then 

[I;]=[' 0 0 1 0  O O 01. 
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. B =  

C = [ C l , .  . . , C,] and D=O , 

where 

L 

j Z i ,  i ,  j =  1,. . . , n, 

0 . . .  0 

"i, . . . ain 

0 o . . . o  

1 o . . . o  

0 o . . . o  

. . .  

. . .  
(ith row) 

n x n  

i =  1 ,  . . . , n .  
1.6 (a) 

u , = [ 1  O]X,. 

(b) Let 

, C=[1 0 . .  .O]  and D=[fio] 
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Then the flis are determined by 

where a,= 1 ,  b,=O for j < O  . 

Chapter 2 

2.2 
2.3 Let 

X("U)=sp{l, t , .  . . , t N ,  t N + ' )  

[ - t i ,  if t 2 t i ,  
0 , if t < t i .  

@ t i ) +  = 

Then X(%)=Sp{(t-to)+, ( t - t l ) + ,  . . . , ( t - t N ) + $  

t N +  ' / ( N  + 1)+ t N +  3/ (N + 3) [ tN" / (N+2)  

2.5 If the input is zero, then the output is u = C x = C @ ( t ,  to )xo .  
Define u( . )=C@(c,  t o ) ( . ) .  Then u(ax, ,+bx, , )=au(x , , )+bu(x , , ) .  If the 
initial state is zero, then the output is u = Cx = Csio @ ( t ,  s)B(s)u(s) ds. Define 
u(.)=CSio@((t,  s)B(s)(.)ds. Then u(au, + h u 2 ) = a u ( u , ) + b ~ ( u Z ) .  If (2.10) is 
considered, then 

U , = C k A , - l . .  . Aoxo+C,Bouo+ . . . +CkBk-,uk-,+DkU, , 

and if (2.1 1) is considered, then 

u ( t ) =  C(t)@(t,  to )x ,+  C(t)S:,@(t, s )B(s)u(s )ds+D(t )u( t )  . 

Since A, ,  . . . , and @(t ,  t o )  are all nonsingular, the linearity of the 
output in the input implies that Ckxo=O for all k and C(t)x,=O for all 
t2 t , .  
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2.6 By Holder’s Inequality, we have 

Suppose that 

Then it follows from the Picard iteration process that 
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which tends to zero uniformly on any bounded interval J as M ,  N+co 
independently. The rest of the proof is the same as the proof to the 
convergence of the infinite series (2.6) in the 1 ,  norm. 
If the discretization formulas A, = hA(kh)  + I etc. are used, then only the 
vector [a b lT= [- 11/15 - 1 1/25IT can be brought to the origin in two 
steps when h= l /5 and only the vector [a  b lT satisfying 1210~- 550b+ 336 
= O  can be brought to the origin in two steps when h=1/10. If the 
discretization formulas Qij = Q (ih, j h )  etc. are used, then only the vector 

can be brought to the origin in two steps. 
2.8 By Holder’s Inequality, we have 

Hence, we have 
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so that 

Chapter 3 

3.1 

3.2 

3.3 

3.4 
3.5 
3.6 
3.7 

If xl, X ~ E  V,, then there exist two controls u1 and u2 such that O = @ ( t ,  
t o ) x i + S ~ o @ ( t , s ) B ( s ) u i ( ~ ) d s ,  i =  1, 2. Thus, O=@(t,t , ) (ax,  + b x , ) +  Sio 
@(t ,s )B(s) (aul (s )+bu2(s) )ds;  i.e., (axl  + b x , ) ~  V,. If xo can be brought to 
0 at time s by a control u, then it can also be brought to 0 at time t 2 s  by 

u(z) , if t , ~ z ~ s  

0 , if s<zst 
i i ( z )  = 

Hence, V ,  is a subspace of V, if and only if s I t .  Combining the above two 
facts, we can similarly prove that V is a subspace of R". 
Let x = x1 + x2 where x1 E (vR)' and x2 E vR. If y E Im { R}, then there is a z 
such that y = Rz and so yTx2 = zTRTx2 = zTRx2 = 0. Hence, Y E  (vR)', i.e., 
Im { R} E (vR)'. By linear algebra, dim(Im { R}) = dim(vR)'. Hence, Im { R} 
=(vR)'. Suppose that x=O. If x, #O, then O=xTx=xT(x, +x2) 
= xTxl # 0, a contradiction. If x2 # 0, we have the same contradiction. 
Hence x=xl +x2=0. 
If Y is controllable, then for any xo, there is a u such that 

1' 

J @ (t*, s)B(s)u(s) ds = - @(t*, t ,)xo ; 
10 

i.e., ImiL,,} = 08". By Lemma 3.2, Im {Q,.} = R". Hence, Q,, is nonsingular. If 
Qt. is nonsingular, let u(s)=BT(s)QT(t*, s)y. Then for any xo the equation 

has a unique solution y .  Hence, Y is controllable. 
det Q, = ( t  - 
det Q,=(b4/12)( t - to)4#0 for all t>to and b#O. 
Verify that @((t*, t,)yo-t- cz@(t*, s)B(s)u*(s)ds=y,. 
By the Cayley-Hamilton Theorem, A" = 0 for rn 2 n. Hence 

# 0 for all t > to. 
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3.8 

3.9 

3.10 

3.1 1 

3.12 

3.13 
3.14 

Since @'no = 0 for all n 2 1, even the zero control sequence can bring any yo to 
the origin. But since the last rows of A,  and Bk are all zero, the last row on 
the left-hand side of @'noyo + Xi= , QnkBk- luk- =y l  is always zero. Hence 
no control sequence can bring yo=O to y1 = [0 . . . 0 13'. Since 

1 10ka-10k-'u, , -10k-~u1,-  . . . -uk - 1 . 1  

any control sequence which brought x k 2  to 0 will bring xkl to 0. But any 
control sequence which brought xk2 to 0 cannot bring xkl to 1, ;.e., E] 
cannot be brought to [A]. 
For any given initial state xo = [:I, we always have x2 = [:;I. Hence, [3 can 
be brought to any preassigned position [::I provided that the control is 
chosen to be [:;I = 63. 
If R,* is a nonsingular matrix and ui- =BiT_l@;iz, then @pryo 
+ (Xr=,+ @,*iBi- lBT- @Ji)z = y  has a unique solution z; i.e., Y is control- 
lable. If Y is controllable, then for any xo, there is { u i }  such that @l*lxo 
+ Xf"= I + , - ,ui - = 0; i.e., yo  = - @,*,xo is in the image of Rp.  Since xo is 
arbitrary, Im { R,*} = R"; i.e., Rp is nonsingular. 
If ,4p is controllable, then by Theorem 3.6, R,* is nonsingular. The universal 
control sequence ut =Bl@Fk+ R; (yl -@f*fyo) then satisfies @,*,yo 
+E?=, + , Q i B i -  ,ui- = y , ;  i.e., 9 is completely controllable. 

SP is (completely) controllable if and only if the matrix MAB has rank n, and 
this is equivalent to saying that (3.14) has a solution u,, . . . , u . + ~ -  ,; ;.e., a 
universal discrete time-interval can be chosen such that its "length" is n. 
Consider the example 

det MAE =acd + bc2 - d 2  # 0 
detMAB=ac-b-c2#0 . 

Chapter 4 

4.1 For any to20, there exists a t ,  >max(to, 1 )  such that 
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where the coefficient matrix is always nonsingular. But if 0 I to < 1, then the 
coefficient matrix becomes [i 

4.2 The corresponding coefficient matrix is 

g] on ( to ,  t , ) c ( t , ,  1). 

I [ 1 l - t 1 + \ L 1 - l \  
1 2(1 - to)  

which is nonsingular for any to E [0, 1 )  and t ,  > t o .  But the matrix becomes 
[: 

4.3 a and b are arbitrary. 
4.4 det NcA= -b2;detP,=b3[(t-to)/12-a](t- to)' whichisnonzeroforsome 

t > to if and only if h #O; a can be arbitrary. 
4.5 ,Y has the observability property on { I ,  . . . , m} if and only if 

3 for any t o 2 1  and t l > t o .  

has a unique solution x l ,  and this is equivalent to the coefficient matrix 
being of full (column) rank, or xI  = 0 whenever (4.6) holds for k = 2, . . . , m. 
Suppose that 9' is observable at time 1. Then there is a p > 1 such that xI  is 
uniquely determined by (0, uk),  k = I ,  . . . , p .  If L, is singular for all m > 1, 
then yTL,y, = 0 for some y l  # 0, is. ,  C k @ k &  = 0, k = 1, . . . , p .  But for uk = 0 

= 1, . . . , p and arbitrary a, a contradiction. Suppose that L, is nonsingular 
for some p > 1. Then it can be shown, by using (3.9) and (429, that 

4.6 

We have U k = C k @ k l X l ,  k = l ,  . . . , p ,  SO that ~ k = c , @ k , ( x [ + ~ y l )  for k 

k = l + l  i = l + l  

so that x l  is uniquely determined by uk and uk over { 1 ,  . . . , p ) .  
4.7 If the rank of NCA is less than n, then there is an a # O  such that Ca = CAa 

- - . . . = CA"- la = 0. By the Cayley-Hamilton Theorem, CAk-'a = 0 for all 
k 2: 1 so that L,a = 0 for all m > 1. Hence L, is singular for all m > 1 so that, by 
Theorem 4.3, Y is not observable at time I .  
Suppose that NCA has rank n. Let x( and y l  be two initial states determined 
by the same (& uk), k = 1, . . . , m. Then it is easy to obtain NCA(xl - y l )  = 0, so 
that xI  =yI;  i.e., .Y is observable at time 1. 
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4.8 

4.9 

4.10 

4.1 I 

4.12 

4.13 

Suppose that Y is totally observable. Then CkAk-lX1=O for k = l ,  1 + 1 .  
Hence x1 = 0. It implies that Tc, = [,,"I has rank n. Conversely, if TCA has 
rank n, then whenever CkAk-'x,=O for k = l ,  1 + 1 ,  we must have x,=O. 
Hence Y is totally observable. 
Let @(t ,s )  and ' Y ( t , s )  be the transition matrices of A(t)  and - A T ( t ) ,  
respectively. Then .Y is controllable on ( to ,  t * ) o Q , *  is nonsingular 0s:: @ ( ( t o ,  t)B(t)BT(t)@'(t0,  t ) d t  is nonsingular, or equivalently P,*= 
J::) YT(t ,  to )B( t )B7( t )Y( t ,  t o ) &  is nonsingular (Lemma 4.1) o g  has the 
observability property on (to, t*). Conversely, Y has the observability 
property on ( to ,  t l )  o P t l  is nonsingular oI : ;Y( to,  t )CT( t )C( t )YT( to ,  t ) d t  
is nonsingular (Lemma 4 . l ) o Q  is nonsingular o,!? is controllable on ( to ,  

Y ,  is completely controllable with the universal discrete time-interval 
{ I ,  . . . , I * )  if and only if the matrix R,* = E:=,+ @,*,Bi- BiT_ a,?;, 
= E:=, + , (Al*-  . . . A , ) B , -  Br- (AT . . . A,?;- , ) is nonsingular. Multi- 
plying both sides to the left by ( A , * - ,  . . . A,) - '  and to the right by 
(AT . . . A,?;- 1)- ', it is equivalent to the nonsingularity of the observability 
matrix L,* of the system c y ,  where L,* = E:=, + Y,,B,- , , Y,, 
+Cf*=,+, . . . (A,')T]TBi_IB~-l[(Ai_ll)T . . . Finally, 
L,* is nonsingular if and only if 9, has the observability property on 
{ I , .  . . , I * } .  Similarly, Y d  has the observability property on ( 1 , .  . . , m) if 
and only if L,=C~=,+l (Aipl . . . A,)TC'C,(A,- ,  . . . A, )  is nonsingular. 
Multiplying to the left by [(A;I1)T. . . and to the right by 
(A;  . . . A;: ,),.t is equivalent to the nonsingularity of the controllability 
matrix R ,  of Y,, which is equivalent to 9, being controllable with 
( I , .  . . , m} as a universal discrete time-interval. 
If c = 0 and a # 0, or if c # 0 and a and b are arbitrary, then Y is completely 
observable. If c#  0, 9' is always totaily observable; otherwise it is always not 
observable. 
For all a and b, Y is always completely observable. The input-output 
relationofitsdualsystemisfik+,+(a- l)fik+2-i7k+l =ij.Thedualsystemis 
completely observable if and only if a # 1 .  

t l ) .  

I 

T ( N C A )  = 

4 C ( A  - l )n-  

C(A-1)n-2 

C 



130 Answers and Hints to Exercises 

Chapter 5 

5.1 Since Mxg= G -  ' M A ,  and N T x =  N C A G ,  the nonsingular transformation G 
does not change the ranks of MAB and N C A .  Since the transition matrix of 
the transformed system is 6(t, s ) = G - ' @ ( t ,  s)G, &=G- 'Qf*(G- l )T  and 

5.2 If the system 9' with zero transfer matrix D is completely controllable, 
then Q p  is nonsingular. Hence, a universal time-interval (to, t * )  c J and a 
universal control u* exist for the same system with a nonzero transfer 
matrix D such that the equation 

Ff = G ~ P , G .  

1' 

@ (t*, t d y ,  + J @(t*,  s)B(s)u(s)  ds =y1 
fo 

has an admissible solution u* for arbitrarily given yo  and y l .  
If the system Y with zero transfer matrix is observable at time to,  then 
there exists an interval ( t o ,  t l ) c  J such that (u(t), u ( t ) ) ,  t ,< t s t , ,  uniquely 
determines an initial state x(to) .  Hence, it can be shown that the equation 

I 

C ( t )  @ (t,  t o )  x ( t o )  = u ( t  ) - D( t )  U( t )  + J C ( t)@ (t ,  S) B (s) u (s) ds 
fo 

has a unique solution x( to )  for an arbitrarily given pair (u(t), u( t ) ) .  

x ( t )  = @ ( t ,  to)x0 + J @ (t,  S) [B(s)u(s) + f ( s ) ]  ds  
f 

5.3 
fo 

f f 

= @ ( 4  to)Cx,+ J@,( to ,  s)f(s)dsI+ pw, 4B(s)u(s)ds  
f0 f0 

f 

: = @ ( t ,  to)yo+ J@(t ,  s ) B ( s ) ~ ( s ) ~ s  
fo 

f 

C(t) @ ( t ,  t o ) x ( t o )  = 44 - D(t)u( t )  + J C(t) @ (t,  4 CB(z)u(z) +f(z)l d t  
fo 

f f 

= [ ~ ( t ) +  J C(t)@(t, z ) f ( z ) d z ]  -D(t)u(t)+ J C(t)@(t ,  t )B(z )u (z )dz  
fo f0 

f 

:=u0(t)-D(t)u(t)+ J C(t )@(t ,  z )B ( z )u ( z )d r  . 
f0 

5.4 Consider the linear system Y with discrete-time state-space description 

x k  + 1 = A kxk + Bkuk 

V k  = c k x k  + D k u k  . 

If { G k }  is any sequence of nonsingular constant matrices and the state 



5.5 

5.6 

5.7 
5.8 

5.9 
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vector xk is changed to Yk by Yk = G; ' x k ,  then the matrices A, ,  B, ,  ck, and 
D ,  are automatically changed to A"k = G; ' AkG,, 8, = G; ' Bk,  e, = CkGk 
and dk = C; 'D, respectively. Hence, the transition matrix o f 9  is changed 

G,;'AjGj and the matrices R,* and L, are changed to 

R,* = 6&;-l1 Bi-  Br- [C;-11]T6.1'i and 

from (Dkj=Ak-l . . . A j  to (D)kj=G;-11Ak-1Gk-1G;-'2Ak-2Gk-2 . . . 

I* 

i = l + l  

- 

rn z,= 6'kTIG:C:CkC,6,, , 
k = l + l  

respectively. Moreover, l?,: and 2, have the same ranks as R,t and L,, 
respectively. 
The transfer matrices D, can be assumed to be zero in the study of 
controllability and observability. The control equation can be extended to 
include a sequence of vector-valued functions, i.e., xk+ = A& + Bkuk +fk 
without the controllability and observability properties being changed. 
The justification of the above statements is similar to the answers to the 
previous three exercises. 
Let x be in &. Then x E sp{N:,} so that A T x  E sp { N: , }  = V,  0 &. Hence 
ATx = x, + x4 where x, E 6 and x4 E &. Since Ax, E sp { M A E }  which is 
orthogonal to &, we have 

x;x, = (x2 + X4)TXZ = ( A T X ) T X ,  = X T A X ,  = 0 . 

Hence, x, = 0 and A T x  = x4 E V4 . 
Let W=[wij]4x4 and A"= WTAW=[iiij]4x4 with i i i j=O if i>j. Then, 
since Wis a unitary matrix, we have WA" = A W. Comparing the (1,l) entry 
and the (2, 1) entry, we have w l l ~ l l = w l l + w , l  and w , ~ ~ " ~ ~ = w , ~ ,  
respectively, so that wZ1 =O. Thus, 8= W ' B =  [0 w,, ~ 2 3  w,,lT, and 
9, is not controllable. 
Use the definitions of M A E  and N,, directly. 
Since any nonsingular transformation does not change the ranks of M A E  

and NCA (Exercise 5.1), the dimensions of Vl, V,, V3 and V4 are never 
changed. 
Since 

A l l  A , ,  n - l  [::][2 :;:][::]. . . [o A 2 , 1  [:: 
0 0 . . .  0 1 0 0 . . .  0 

L 
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and rank (U-lMA,)=rank(MA,)=n, +n,, we have 

i.e., the combined subsystem 9, and 9, is (completely) controllable. Since 
the above shows that 

* . . .  
rank ( ["I * 

B ,  A, ,B ,  . . . AZi'B, 

where the * entries are in terms of A , , ,  A,, ,  A,,, B ,  and B, ,  we have 

rank([& 

so that .Y', is also (completely) controllable. (Note:  this does not imply that 
,Y, is also (completely) controllable because the rank of 
[ B ,  
The observability can be similarly proved. 

A , , B , .  . . A;;'B,])=n, , 

A , , B ,  . . . A ; T ' B , ]  may not be n,, see (5.3) and Exercise 5.13b. 

m 03 

5-10 Z { g k + l } =  1 g k + l Z - k = - z g O + Z  1 g k Z - k = - Z g O + Z Z ( g k }  . 
k = O  k = O  

m 

j -  1 

i=O 
= - z j  1 g i z - ' + z j z ( g k )  

1 
- - r ( M A B ) = l  and r ( N c A ) = 2  . (s-1) 5.11 H ( s ) =  

5.12 
(s+3)(s-1) s + 3 '  

q m ( . ~ ) - q m ( t ) = ( S m - t m ) - a l ( s m - l  - t " - ' ) -  . . . -a , - , (~ - t )  

= ( s - t ) [ ( s m - I + s m - ~ t +  . . . + s t m - Z + t m - ' )  

- a, ( f - 2  + sm- 3 + . . . + stm- 3 + r - 2 )  - . . . - a m -  ,] 

= (s- t ) [ s m - l  + s " - ~ ( t - a 1 ) + s " - 3 ( t ~  -u,t -a,)+ . . . 

+ s ( tm-  2 - a, t m -  3 - . . . -a,_,t) 

+(t"- '  . . . -am-,)] 
m -  1 

k = O  
= ( s - t )  1 ( t k - q t k - 1 -  . . . -uk)s"-k- l  . 

5.13 Use the definitions of MAB and NCA directly. 
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Chapter 6 

6.1 (a) 

/ -@(&to)= 0 0 0 
1 0  0 0 

{equilibrium points} =sp 

(b) 

1 "1, 0 

1 

{equilibrium points}=sp[[ i] , [!]I . 

6.2 (a) 

/ - @ ( t ,  t o )=  , {equilibrium points} =sp 

1-cosh(t-to) 1 -sinh(t-to) 
0 (b) / - @ ( t ,  t o ) =  

6.3 
6.4 

Since A(t)x,=f,=O and A(t) is nonsingular at some t >  t o ,  we have x,=O. 
Let E = [eij] and F = [Jj]. Then 

6.5 I A I p =  I(A +B)-BI , I  I A +BI,+ lBlp implies that I AI,- IBI,I 

I A + B I p ,  and I B I p  = [ ( A  + B) - A I p  I IA + BI, + IA 1, implies that I BI,- 

I A l , I I A + B I , .  Hence I IAlp-lBl,,I~IA+BI,, . 
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F( t i )At i  
n b 

I lim IF(ti)lpAti= SIF(t)l,dt 
n - c o i = l  a 

6.7 Suppose not. Then there is some entry &. j o ( t ,  to)  in @(t, to), 1 si,, 
j o  5 n, such that jo( t , .  to)[ > c0 for t ,  > to and some c0 >O. Let x ( to )  = 
[ O . .  . 0 1 0 . .  . 0 lT=e jo .  Then 

Ix@,)I = I@@,, to )x ( to ) l2  M i o ,  j & M ,  to)l  >Eo ; 

i.e., Ix(t)l++O as t+ + 00, contradicting the asymptotical stability assump- 
tion. 

6.8 (a) limf+m e-aftb = lim, + 3j (tb/ea'). Use L'Hospital's rule. 
(b) Without loss ofgenerality, suppose that c >O. Write c =exp(ln c). Since 
c < 1 ,  In c < 0. Hence, from (a) we have 

lim ma lim e('"')" ma=O . 
m- m + x ,  

6.9 Let c satisfy 0 < c < a. Then for large values oft, ct I (a - b)t - In M. Hence, 

I M~ -af  t b  =,In M e -af  eb In f < - b ) f  - In MI < e  -CI - - 

for all large values of t .  
6.10 The time-invariant free system (6.1) is asymptotically stable about 0 if and 

only if I@(t, to)l+O as t+ + co by Theorem 6.1, where @(t,  to) is given by 
(6.6), ifand only if Re{ij} <Ofor allj. Similarly, the system is stable about 0 
if and only if there exists some constant C>O such that I@(t, t,)l < C  by 
Theorem 6.1, and this is equivalent to Re{ Ai}  < 0 for a l l j  and ij is a simple 
eigenvalue of A whenever Re{Aj} =O. This statement can be concluded by 
examining (6.6). 

6.11 Denote 

Then EJ=O for j 2  n where n is the dimension of E. Hence, 
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x l , = l .  Then Ax=Ax 

Bxl = II A II + II B II . 

6.12 (a) A l  =i, 12= -i. Re{Al}=Re(A2}=0 but E,, # A 2 .  The system is stable. 
(b) I,,=i, A,= -i. ~ A l ~ = ~ I ~ , ~ = l  but A l # A 2 .  The system is stable. 

6.13 (a) I I A I I = S U ~ ~ ~ ~ , = ~  IAx121suplx12=l IAI2lxl2 by Exercise 6.4. 
(b) Let x be the corresponding eigenvector with 

6.14 Let J be the Jordan canonical form of A, A = P -  J P ,  and let yk = Pxk. 
Then xk+ = Ax, is stable about 0 if and only ify, + = Jyk is stable about 0, 
and this is equivalent to lAjz,l _< 1 for all j and Lj is a simple root of the 
minimum polynomial of J whenever lljl = 1, (Theorem 6.4). This state- 
ment is also equivalent to I(Jkll I I J k 1 2  being bounded for all k by 
Exercises 6.1 3a and 6.1 1. xk + = Ax, is asymptotically stable about 0 if and 
only ifyk+ =Jyk is asymptotically stable about 0, and this is equivalent to 
lAjl<l, j = l , .  . . ,1, by Theorem 6.4, or ( I J k ) l < l J k 1 2 + 0  as k-+co ,  by 
Exercises 6.13a and 6.1 1 .  

6.15 Definition. A discrete-time time-varying free linear system is said to be 
asymptotically stable about an equilibrium point x, = O  if there exists a 
6 > 0  such that lxk12+0 as k + + m  whenever 1 ~ , 1 ~ < 6 .  It is said to be 
exponentially stable about the equilibrium point Oif there exists a positive 
constant p< 1 such that the state vectors xk satisfy (xkl <lx0lpk for any 
initial state no and all sufficiently large k. 
Theorem. Let @ k o  be the transition matrix of the discrete-time time- 
varying free linear system. This system is asymptotically stable about 0 if 
and only if I @ k O l + O  as k+  + co. This system is exponentially stable about 
0 if and only if there exists a positive constant p < 1 such that ( @ k O  1 I pk for 
all sufficiently large k. 
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6.16 Let 

P f j  d " ~ - 1  

( s l - A ) - ' =  j = 1  I = 1  ( s - % j )  f + 1  ' 

Then 

d n ~ - l t l  
h ( t ) = ~ - 1 { H ( s ) } = 6 P - 1 { C ( ~ I - ~ ) - 1 B } =  1 -e'jl Q l j  , 

where Q l j = C P f j B .  
If there exists a pole, say Ajo, which lies on the closed right half s-complex 
plane, then 

j = 1  I=0 I !  

6.17 

so that Sb- ' "Jh(~) ld~ is unbounded for large t. 
Conversely, if all the poles of H ( s )  lie in the open left half s-complex plane, 
then 

t - tn I - t o  

0 0 

for some constant M(to )  < + co. 
6.18 Definition. A discrete-time time-varying system is said to be I - 0 stable 

about an equilibrium point x,=O, if for any given positive constant MI, 
there exists a positive constant M 2  such that whenever xO=O and 
lukJ<M,  for all k20, we have 

Juk I I M ,  for all k 2 0. 

Theorem. A discrete-time time-varying system is 1 - 0  stable about the 
equilibrium point 0 if and only if there exists a positive constant K such 
that 

ck 1 . A I B j I s K ,  forall k = l , 2 , .  . . I k  j =  1 

6.19 IfIu,1<1 f o r a l l k r O a n d C ~ = , ( h j l s K f o r a l l  k r l ,  then 

Hence the system is I - 0 stable about 0. If the system is I - 0 stable, then 
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there exists a positive constant K such that whenever xo = 0 and 1 uk I I 1 for 
all k20 ,  we have Ivk l<K.  If X ; = l l h j l  is unbounded, then for each 
(arbitrarily large) positive constant N ,  we can choose k l > O  such that 

lhjl > p q N .  Hence, if we denote by hjlk the (1, k)th entry of the q x p 
matrix hj,  then 

for some (a, p) where 1 scrlq and 1 1 p s p .  That is, X5L1 ( h j , , l > N .  Let 

u ~ , - ~ = [ o . .  . Osgn{h jaO}O. .  . 01' ~ 

where sgn{hjas}  is placed at the pth component of uk, - j .  Then 

a contradiction. 
zX(z) = AX(z) + BU(z )  6.20 

and 
V(z)  = CX(z ) ,  

C(ZZ - A)*B 
V(Z)=CX(Z)=C[ZI -A]- 'BU(Z)= 

det (zl- A )  
6.21 Let r be the radius of convergence of C r  a,w". If r >  1 ,  then G,+m l ~ , , [ l ' ~  

= l / r<  1 so that XF (a,l< 03. Conversely, if Xr lanl < co, then la,1+0 as 
n+co. Hence, r=limlu,I-""2 1 .  Sincef(w) is a rational function,f(w) has 
only finitely many poles, say at zl, . . . , z,, and lzkl 2 1 for all k. We will 
see that Izk I > 1 for all k. Suppose Izl I = 1. Then, rewritingf(z) as 

(w b l m i  - Zl )ml  )+ f(w) = p(w) + ( + . . .  + 
w-z1 

blI.nl" +(A. + . . .  + (w - z , p  w-z, 

where p is a polynomial and 1 < m i  < 03, i =  I ,  . . . , n, it follows from 

1 -- 
Z 1  

that if rn, = 1, we have 
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If rn, > 1, we can prove the same result by induction. Hence lzkl > 1 for all 
k. It follows thatf(w) is analytic in IwI < r where r > 1. 

6.22 
A = [ l  0 1  0], .=[:I, and C = [ - l  11 . 

This system is completely controllable, and since one of the eigenvalues of 
A is 1, the system is not asymptotically stable. Since H(s)= l/(s+ l), the 
system is I - 0 stable. 

6.23 
A = [  0 1  1, B = [  -:I, and C=[O I] . 

1 0  

Chapter 7 

7.1 

7.2 

7.3 

7.4 

Let x1 = 8, x, = d. Then 

f I  

minimize F(u): F ( u )  = 1 1 dt , 
IU I  5 1 0 

[::I=[ -:; - a ]  [::I+[ ; ] u  ' 

A Bolza problem can be reformulated as a Mayer problem by adding an 
extra coordinate x,,~ and using the Pontryagin function with 
F(u)  = h( t , ,  x ( t ,  )) + [O . . . 0 11 [:::ll)(fl ,]. A Mayer problem can be 
changed to a Lagrange problem by letting F ( u ) = h ( t , , x ( t , ) )  = 
ji; [ h ( t , ,  x(tl))/(tl - to)]  dt .  A Lagrange problem can be converted to a 
Bolza problem by'simply choosing h = 0. 
Suppose that k , ( t ) ,  the ith component ofk(t), is not zero at t = t , E [ t , , t , ] .  
Without loss of generality, suppose k i ( t , )  > 0. Then by the continuity of 
k i ( t ) ,  there exists a neighborhood N ( t , ,  6) oft, on which ki(t) > 0. Choose 
q(t) = [O . . . . 0 u i ( t )  0 . . . 0IT where the ith component q i ( t )  > 0 on 
N ( t 2 ,  6). Then we have l::,kT(t)q(t)dt> 0, a contradiction. 

. d  d 1  5 = -(6x) = - lim - [ x (u  + ~ q ,  t )  - x(u, t ) ]  
dt dta+OE 
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1 ag 
au 7.5 0 = bqF(u*)=  ( ~ * , ~ * , t ) < ( t ) +  - ( ~ * , u * , t ) q ( t )  dt 

= 1 1 " (~* ,u* , t )@(t ,z )~(x* ,u* ,z)q(z)dz af dt  + ax aU 
to to 10 

1 = j [ j 3 ( x * ,u * , t )@( t ,  z ) - ( x * , u * , z ) d t  + - - (x * ,u * , z )  q ( z ) d t  ?f ag 
ax au aU 

10 r 

The completeness of U implies (8.10) 
7.6 Since i*=x*-p*  andp*=-x*-p* ,we havep*= - i * - p * =  - x *  

+ p * - p *  =2p*. Hence, p*(t)= C,exp(J2t)+C2exp(-$t). The two 
boundary value conditions 

p*(1)=C,eJ2+c2e-J2=O 

x*(O)= -(P*+p*)(O)= - ( l+JZ)C , - ( l - JZ)C ,=  1 

give 

exp(2$) and 
- 1  c, = 

( f i + l ) + ( J Z - I )  
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7.7 Let H = f [ ( x - l ) '  + u 2 ]  + p ( - x + u ) .  Then ( c ? H / d u ) = u + p = O  implies 
that u* = - p * .  The two-point boundary value problem is 

x * ( 0 ) = 0 , p * ( l ) = 0  . 

Finally, 

U * = + - -  : ( ~ + L : / Z ) e ~ ' r - : ( r - ~ ) e - \  2' 

7.8 Since the Hamiltonian is 

H = + [ x T ( t ) Q ( t ) x ( t )  + u'( t )R( t )u( t ) ]  + p ' ( t ) [ A ( t ) x ( t )  + B(t)u( t )]  , 

we have, from (7.13), u*( t )  = - R - ' ( f ) B 7 ( f ) p ( f )  and hence 

A t )  = - A T ( t ) p ( t )  - Q(f )x ( t )  

p ( t * ) = O  ' 

Let p ( t )  = L( t )x ( t ) .  Then L( t ,  ) = 0 and for any nonzero x ( t )  (determined 
by the arbitrarily given xo), from the costate equation we have 

[ i ( t )  + L ( t ) A ( t )  + A'(t)L(t) - L ( t ) B ( t ) R  ~ ( t )B ' ( t )L( t )  + Q ( t ) ] x ( t )  = 0 

7.9 Since the Hamiltonian is 

H = i [ ( y - ~ ) ' Q ( t ) ( y -  ~ ) + u ' R ( t ) u ]  + p ' [ A ( t ) ~ + B ( t ) u ]  , 

from (7.1 3 )  it follows that u* = - R ~ ' B T ( t ) p  so that 

6 = - A T ( t ) p  - Cl ' ( t )Q( t ) ( y -  V )  

P ( t 1 )  = 0 ' 

Let p ( t )  = L ( t ) x  - 2 .  Then for any nonzero x (determined by the arbitrarily 
given xo), from the costate equation we have 

[ i ( t )  + L( t )A ( t )  + A T ( t ) L ( t )  - L( t )B( t )R-  ( t )BT( t )L ( t )  

+ C T ( f ) Q ( t ) C ( t ) ] x  + {i+ [A(t)-  B(r)R- ' ( t )BT(t )L( t )]Z 

+ c ' ( t )Q( t ) y )  = 0 , 

L ( f , ) x ( t , )  - ?At,)  = 0 . 

7.10 From (7.5) we have 



Answers and Hints to Exercises 141 

For convenience, we will simply write x k ,  uk instead of x;, u:, respectively. 
A necessary condition is 6 F  = 0, i.e. 

k = k o +  1 , k o + 2 , .  . . , k l  . 

Substituting ( 2 )  into (l) ,  we obtain 
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Since the sequence { &ku,  6uku + SukI } can be arbitrarily 
chosen as long as it is in the admissible class which contains the 
“delta sequences”, by choosing it to be (0, . . . , 0, e , } ,  
{ ei, 0, . . . , 0 } ,  (0, ei, . . . , 0 } ,  . . . , { 0, . . . , ei, 0) respectively, where e, 
= [0 . . . 0 1 0 .  . . O ] *  with 1 being placed at the ith component, 
i =  1 , .  . . p ,  we obtain 

. . . , bukl - 

j = k o + l ,  . . . ,  k ,  . (4) 

To simplify (4), define the costate Pk to be the unique solution of 

where mkj = A,_ . . . A j  is the transition matrix of (1). Hence, (3) and (4) 
can be rewritten as 

~ ~ ~ ( x j ~ l , u j ~ l , j - l ) + - ( x j ~ l , u j ~ l , ~ - l ) = O  a f  a g  , 
aU aU 

j = k , + I ,  . . . ,  k ,  . 

Furthermore, if we define the Hamiltonian to be 

H(xk,  U k ?  Pk + 1 9 k ,  = g ( x k ,  ‘ k ,  k ,  +Pk‘+ 1 f ( I k ,  ‘ k r  k ,  7 

then ( 5 )  is equivalent to 
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Chapter 8 

8.1 Since the Hamiltonian is H = 3(x2 + u 2 )  + pu, ( d H / d u )  = u + p so that 
u* = - p * .  Solving the two-point boundary value problem 

i* = - p * ,  p* = -x* 

x(O)= 1 ,  p * ( 2 ) = 0  , 

we obtain 

e - 2  e2 * t  -- e' + ~ e- ' x ( ) -  e2 and 
e2 + e - 2  

e2 
e' + e- 

e' - ~ 

e-2  
e' + e-' 

u*(t)  = ~ 2 e - '  

Solving the second problem, we obtain the same optimal control u*. 

z I ' I  + Sg(x,u,s)ds 

7 I TI 
+ S g ( i , r l , s ) d s  [for some ( k i )  and f , ]  
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- 
T 1 1  

= Jg(Z,r i ,s)ds + j g(X, r l ,  s )ds  [for some ( u , Z ) ]  
1 T 

i; 
= j g(X, u,  s)ds 

t 

U t  U 

8.3 Solving the minimization problem (8.4), i.e. 

min { $ [x' Qx + uTRu]  + 
u t U  

we obtain 

Substituting u* and the linear system equation into (8.3), we arrive at the 
required form. For any nonzero x (determined by the arbitrarily given xo), 
let V =  i x T L ( t ) x .  Then L(t,)=O and 

+X'[L+ LA + ATL - L B R -  ' B T L  + Q ]  x = 0 . 

8.4 Since u* = - d V / d x  = a(t)x so that 

i* = [l + a ( t ) ] x *  = -x* 
b(t) 



Answers and Hints to Exercises 145 

8.6 Substituting x = l / z  + x1 into Riccati's equation, we have 

i + [b(t)  + 2a(t)x,]z +u( t )  + [ -i, + a(t)x: + h ( t ) x ,  + c(t)]z2 = 0 

Since x1 is a particular solution of the Riccati equation, the coefficient of z 2  
is zero. 

8.7 Imitate the procedure used in solving the one-dimensional example in this 
section. 

8.8 Lemma 8.3 can be proved by imitating the procedure used in proving 
Lemma 8.2 (see the answer to Exercise 8.2). Theorem 8.2 can be proved by 
using Lemma 8.3 repeatedly. 
Let V, be the minimum value of the sum E:= Ti.  By Lemma 8.3 we have 8.9 

Since V ,  (Y) = Y, VI ( r / r l )  = r / r l .  Hence, when n = 2. 

Using calculus, we obtain rT = Jr so that rT = Jr and V ,  = 2 ~ 7 .  
When n =  3, 

v3(r)= min [ r ,  + v2(k)]= O s r l  min s r  [ r ,  +2(k)' l2]  . 
O s r l  < r  

Using calculus agian, we obtain rT = r113 and so V2(r / rT)  = r 2 / 3 .  Minimiz- 
ing this V ,  by using the above procedure, we have r: = r: = r113. By 
induction, we obtain rr  = r l i n ,  i = I, . . . , n. 
Ifthe terminal time t ,  is fixed, we have the same two-point boundary value 
problems as those in Exercises 7.7-9. 
From Theorem 8.3, we have p = p with p(l)=O which implies that p=O. 
Hence we need to find u* such that 

8.10 

8.1 1 

Iu*( =min(u( 
U E  u 
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subject to i* = x* + u*,  x*(O) = 0 and x*(l) = 1. From 

l = x * ( l ) =  Se'-'u*dt=(e-l)u* , 

we obtain u* = l/(e- 1) 

1 

0 

Chapter 9 

9.1 Without loss of generality, suppose that yi(t), the ith component of y(t) ,  is 
positive on some subset E with positive measure in [to,t:] and that 
uF(t)  # sgn{y,(t)} on E. Then uF(t )  < 1 --E for some E > O  on E. Define 
i ( t )  =u* ( t )  except that i i ( t ) =  1 on E. Then we have h~ Wand 

y'(t)h(t) > y'(t)u*(t) = maxy'(t)u(t) , 

a contradiction. 

U E  w 

-1, 0 I t < 1 ++@, 9.2 u * ( t )  = 

9.3 From (9.9) we have q2( t )  = -euri2(z1t + z,) where q(t) = [ql(t) q2(t)lT and 
z=[zl  zZ]' so that u* = -ssgn{B'q(t)} =sgn{e'"2(zlt+z,)}. 

9.4 Since 

11 

l = x ( t l ) =  J [u(s)-u2(s)]ds<(tl -to)max(u-uU2) , 

and ( u - u 2 )  assumes its maximum at u =  3, we have t:  - to = 4 and 

l o  

u* = 112. 
9.5 MA, = [- 3 is of full rank and has eigenvalues lbl = 1 and I", = - 1. 
9.6 M A ,  is of full rank, hence the system is normal. The optimal control 

function is u * ( t )  = sgn{+tzzl - t z ,  + z 3 }  . 
9.7 Writing B =  [b ,  . . . bp] and observing u? = ~ g n { z ~ e x p [ - ( t - t ~ ) A ] b ~ } ~ ,  

i = 1, . . . , p ,  we can prove the result for each i, i = 1, . . . , p ,  by imitating the 
proof of Theorem 9.5. 

=I-(t-t,)Pdiag[A, , . . . , Ikn]P-l 

++Pdiag[i:, . . . , IG,2]P-' - . .  
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= P  I-(t-t,)diag[A, , . . .,A,,] i 
- d,(r - r~)]p- 1 ) . . .  , e  = p diagCe- A I ( '  - l o )  

9.9 When k = 1, c1  (t)exp [pl ( t  - to)] has the same zeros as c ,  ( t )  and hence has 
at most rn, - 1 positive zeros. Assume that h k - l ( t )  has at most rn, + . . . 
+ mk- - 1 positive zeros but h k ( t )  has at least rn, + . . . + mk- + mk 
positive zeros. Then 

k 
e-flk('-'O) hk( t )  = cj(t)e(flj-flk)('-'O) 

j =  1 

has also at least rn, + . . . + rnk positive zeros. Hence, the mk th derivative 
of exp[-pk(t-tO)] hk(t) ,  which is C::: Zj(t)exp[(pj - pk)(t-tO)] where 
(p j  - p k )  are distinct and C j ( t )  is a polynomial of degree mj - 1 for each j ,  
has at least rn, + . . . + mk - mk = m,  + . . . + mk- positive zeros. This 
contradicts the induction hypothesis. 





Notation 

x, x(t) ,  x k  n x 1 state vectors 
u, u(t), uk p x 1 vector-valued control (or input) functions, p i n  
u, u(t),  vk q x 1 vector-valued output functions, q i n  
x, equilibrium point (or state) 49 
x* optimal trajectory (or state) 72 
(x:} optimal trajectory (or state) sequence 78 
u* optimal control function 72 
{ u t }  optimal control sequence 78 
uzb optimal (bang-bang) control function 98 
xo, x k o  initial states 9, 78 
xl, xk, target positions 87, 94 
t , ,  k ,  terminal times 70, 78 
t:, k: optimal terminal times 83, 87 
p costate 74 
p* optimal costate 74 
{p? )  optimal costate sequence 79 
X subset in [w" to which all trajectories are confined 70, 81 
X T  losed subset of X 81 
(@, U ,  W admissible classes of control functions 
U(z ,  y )  subset of admissible control functions 81 
w b b  set of bang-bang control functions 96 
J time interval 8, 70 
J ,  closed sub-interval of J 81 
M ,  target, M , = J T x X ,  81 

A(t), A n x n system (or dynamic) matrices 
B(t), B n x p control matrices, p < n  
C(t), C q x n observation (or output) matrices, q l n  
D(t) ,  D q x p transfer matrices 
@(t, z), (Dij state transition matrices 8, 13 
G( t )  gain matrix 108 
H(x ,  u, p ,  t), H(xk, uk, pk+l ,  k) Hamiltonians 75, 78 
J Jordan canonical form 58 
det A determinant of matrix A 
A* adjoint matrix of A 44 

14, 70, 94 
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11 A )I operator norm of matrix A,  I1 A II : =sup { I  Axl, : 1x1, = 1 1  60 

IAJ,  1, norm of matrix (or vector) A ,  [AI,:= Cluij lP , l i p < 0 0  
( i . i  Y I P  ~- 

IAI, I" norm of matrix (or vector) A,  IAIm:=maxIuijl 

IAl:= 51,96 
diag[1,, . . . , L,] diagonal matrix 
Y linear system 
9, continuous-time linear system 
Yd discrete-time linear system 
sp {x,, . . . , x,} 
v null space of 
0 direct sum of 
L,[to, t l ]  space of almost everywhere bounded functions 95 
9 Laplace transform 43 
Z z-transform 43 
H(s)  transfer function 44 
H(z )  transfer function 66 
sgn signum function 63 
V(x,  t )  Lyapunov function 1 1  1 
V(t ,  y )  value function 83 
qm(s) minimum polynomial 45 

Llu:=J @(t, ~ ) B ( s ) u ( s ) d s  18 

Qf: = J @(t ,  S) B(s) BT(s)QT(t, S)  ds 

PI: = J to)CT(7)C(7)@(7, t , J d ~  27 

i .  j 

linear algebraic span of set (x,, . . . , x,} 14, 37 

I 

f0 
I 

18 
10 
I 

10 
I* 

m 

MAB: = [ B  AB . . . A"-'B],  p n ,  controllability matrix 20 

NcA: = [ 
TcA: =[:A], total observability matrix 30 

", observability matrix 28 

CA"-' 
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h*(t, s): = C(t)@(t, s)B(s) 
h(t): = CerAB, impulse response 63 
h i  = CAj-'B, impulse response 65 

R,: = S @(to,  s )B(s)u(~)ds:  U E  W 95 

62 

I i: 
X, target set 81 

t 

x,: = @ ( t ,  to){xo + R,} = {@(t, t0)xo + f @(t, s)B(s)u(s)ds: UE W }  

K(u): = f @(to, s)B(s)u(s)ds 

95 
to 

t 

95 
to 

t 

Bt: = { @(t, t0)xO + @(t, s)B(s)u(s)ds: U E  w b b }  c x, 97 
to 

v= vy: = { U E  w: y =  f @(to, s)B(s)u(s)ds} 97 
l o  

aRt: boundary of Rt: 98 
61 variation of vector-valued function 1 73 
allau gradient of scalar-valued function 1 with respect to u, a row-vector 73 
allau matrix, where both 1 and u are vectors 73 





Subject Index 

Admissible class (or set) 6, 14,81, 113, 116, 117 
Affine hull 114 
Affine set 114 
Affine translation 95 
Algebraic multiplicity 57 
Almost everywhere 94 
Analytic function 67, 101, 102 
Asymptotic state-stability 
Asymptotically stable equilibrium 50 

50, 58, 68, 69 

Banach-Alaoglu Theorem 95 
Bang-bang control function 96 
Bang-bang principle 96, 97 
Bellman 81, 83, 84 
Bolza problem 71, 79 
Bore1 measurable function 117 
Bounded-input bounded-output stability 61 
Bounded measurable function 16, 26, 37, 43 
Brownian motion 117 

Calculus of variations 72 
Cauchy sequence 10, 11 
Cayley-Hamilton theorem 2, 4, 20, 23, 28, 

Characteristic polynomial 3, 46, 56 
Compact set 95 
Completeness 73, 74 
Constructibility 106 
Continuous-time dynamic programming 83, 

Continuous-time system 6, 8 
Control difference equation 21 
Control differential equation 16 
Control function 9, 16 
Control matrix 6 
Control-observation process 16 
Control sequence 12, 21, 87 
Control theory 6, 9,43, 75, 106, 118 
Controllability 16, 17, 21 
-complete 19, 21 
Controllability matrix 21, 37 
Convex combination 97 

39,101 

92 

Convex set 95, 97 
Convolution 64 
Cost 71, 117 
Costate 74, 91 
Costate equation 74 
Costate functional 71 

Damped harmonic oscillator 79, 104 
Delta distribution 16 
Delta sequence 78 
Derived cone 114 
Descartes’ rule of signs 103 
Difference equation 9 
Differential controllability 107 
Digital system 6 
Discrete-time dynamic programming 86, 93 
Discrete-time optimality principle 87 
Discrete-time system 6, 12 
Discretization 13 
Discretized system 6 
Distributed parameter system 115 
Dual system 26, 31, 33 
Duality 31, 33 
Dynamic equation 6 
Dynamic programming 81,90,94 

Energy 71 
Equilibrium point (or state) 49, 110 
Expectation operator 117 
Exponential stability 54, 69 
Extreme point 97 

Final state 12 
Free system 49, 112 
Frequency s-domain 43 
Fuel 71 
Functional 71 
Functional analysis 94, 95, 97 
Fundamental matrix 8 

Gain matrix 108 
Gaussian random vector 117 



154 Subject Index 

Geometric multiplicity 57 

Hamilton-Jacobi-Bellman equation 84, 85, 90, 

Hamiltonian, 75, 78, 91, 99, 113, 116 
Homogeneous equation 9 
Holder inequality 15 

Impulse response 64 
Initial state 2 
Initial time 16 
Initial value problem 74 
Input-output relation 1, 3, 4 
Input-output (1-0) stability 45, 61, 65, 66, 69 
Input-state relation (or equation) 2, 8, 16 
Instability 45 
Interior 73 
Invariant subspace 39 
Inverse Laplace transform 53, 64 

92 

Jordan canonical form 56, 57, 58, 68 

Kalman canonical decomposition 
Kalman filter 118 
Krein-Milman Theorem 97 

37, 38, 108 

Lagrange problem 70, 71, 79 
Landau notation 53 
Laplace transform 43, 52, 64, 66 
Linear algebra 18, 39, 45, 56 
Linear (dynamic) system 6 
Linear feedback 80, 112, 118 
Linear operator 15 
Linear regulator 75, 80, 92, 117 
Linear servomechanism 76, 79, 80, 93 
Linear span 14 
Linear system theory 106, 118 
Lyapunov, A. M. 49 
Lyapunov function 11 1 

Matrix Riccati equation 80, 92 
Mayer problem 70, 79 
Measurable function 94 
Measure theory 94 
Method of characteristics 90 
Multi-input /multi-output 5 
Minimal-order observer 108 
Minimal realization 44, 110 
Minimization 
Minimum-energy control 71 
Minimum-fuel control 71, 86, 93 
Minimum polynomial 45, 56, 58 

71, 83, 87, 88, 89, 94 

Minimum principle (of Pontryagin) 

Minimum-time control 71, 94, 98, 
98 

Noise 117 
Nonlinear system 110 
Non-smooth optimization 85 
Normal system 101 
Normality 102 

Observability 26, 30 
--at an initial time 26, 30 
-complete 26, 30 
-on an interval 26, 29 
-total 26, 30 
Observability matrix 28, 37 
-total 30 
Observation equation 17, 21 
Observation (or output) matrix 6 
Observer 107 
Operator norm 60, 69 
Optimal control function 72, 95 
Optimal control theory 70, 106 
Optimal terminal time 82, 87 
Optimal trajectory (or state) 72 
Optimality principle 81, 82 
Optimization 70, 71 
Ordinary differential equation 9, 90 
Orthogonal complement 42 
Orthogonality 39 
Orthonormal basis 38 
Outer normal (vector) 98, 104 

81, 90, 91, 

loo, 104 

Partial differential equation 90 
Penalty functional 71 
Picard (iteration process) 9, 10 
Piecewise continuous function 9, 16,26,37,43, 

Pole-zero cancellation 44 
Pontryagin function 71 
Pontryagin’s maximum principle 113, 114, 

Pontryagin’s minimum principle 90,91,93,94, 

Positive measure 94,98 
Product space 95 

73, 94, 116 

115, 116, 117 

99 

Rational function 67, 69 
Reachable 106 
Reachability 106 
Relative interior 114 
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Riccati equation 86, 92, 93, 112, 118 
Riemann sum 68 

Sampling time unit 6 
Schwarz’s inequality 52, 55, 56, 62, 68 
Separation principle 117 
Single-inputlsingle-output 5 
Signum function 63, 98, 101 
Singular optimal control problem 101 
Spectral radius theorem 60 
Stability 45, 61, 67, 69 
-in the sense of Lyapunov 45,49,50,58, I10 
Stabilization 112 
Stable equilibrium in the sense of Lyapunov 50 
State 1 
State matrix 6 
State-output relation 2 
State-phase plane 100 
State reconstruction 107 
State sequence 21 
State-space 2, 6 
State-space description 4, 5, I3 
State-space equation 2 
State-space model 5 
State stability 45, 50, 56 
State transition equation 8, 12 
State transition matrix 9 
State variable 1 
State vector I 
Stochastic differential equation 117, 118 
Stochastic optimal control 117 

Switching time 100, I02 
System 1 

Target 70, 81, 87 
Terminal time 24, 72 
Time domain 43 
Time-invariant linear system 36, 37 
Time-invariant system 5 
Time-space 82, 87 
Time-varying system 5 
Transfer function 43, 44, 64, 66 
Transfer matrix 6 
Transition matrix 9, 12 
Transition property 8, 12 
Triangle inequality 
Two-point boundary value problem 76,77,80 

10, 15, 55, 68 

Unitary matrix 38 
Universal control function 20 
Universal control sequence 23 
Universal discrete time-interval 22 
Unstable equilibrium 50 

Value function 83 
Variation 73 
Variational method 70, 72, 93 

w*-compactness 95 
Weierstrass theorem 11 

z-transform 43, 66 






	Linear Systems and Optimal 001.pdf
	Linear Systems and Optimal 002.pdf
	Linear Systems and Optimal 003.pdf
	Linear Systems and Optimal 004.pdf
	Linear Systems and Optimal 005.pdf
	Linear Systems and Optimal 006.pdf
	Linear Systems and Optimal 007.pdf
	Linear Systems and Optimal 008.pdf
	Linear Systems and Optimal 009.pdf
	Linear Systems and Optimal 010.pdf
	Linear Systems and Optimal 011.pdf
	Linear Systems and Optimal 012.pdf
	Linear Systems and Optimal 013.pdf
	Linear Systems and Optimal 014.pdf
	Linear Systems and Optimal 015.pdf
	Linear Systems and Optimal 016.pdf
	Linear Systems and Optimal 017.pdf
	Linear Systems and Optimal 018.pdf
	Linear Systems and Optimal 019.pdf
	Linear Systems and Optimal 020.pdf
	Linear Systems and Optimal 021.pdf
	Linear Systems and Optimal 022.pdf
	Linear Systems and Optimal 023.pdf
	Linear Systems and Optimal 024.pdf
	Linear Systems and Optimal 025.pdf
	Linear Systems and Optimal 026.pdf
	Linear Systems and Optimal 027.pdf
	Linear Systems and Optimal 028.pdf
	Linear Systems and Optimal 029.pdf
	Linear Systems and Optimal 030.pdf
	Linear Systems and Optimal 031.pdf
	Linear Systems and Optimal 032.pdf
	Linear Systems and Optimal 033.pdf
	Linear Systems and Optimal 034.pdf
	Linear Systems and Optimal 035.pdf
	Linear Systems and Optimal 036.pdf
	Linear Systems and Optimal 037.pdf
	Linear Systems and Optimal 038.pdf
	Linear Systems and Optimal 039.pdf
	Linear Systems and Optimal 040.pdf
	Linear Systems and Optimal 041.pdf
	Linear Systems and Optimal 042.pdf
	Linear Systems and Optimal 043.pdf
	Linear Systems and Optimal 044.pdf
	Linear Systems and Optimal 045.pdf
	Linear Systems and Optimal 046.pdf
	Linear Systems and Optimal 047.pdf
	Linear Systems and Optimal 048.pdf
	Linear Systems and Optimal 049.pdf
	Linear Systems and Optimal 050.pdf
	Linear Systems and Optimal 051.pdf
	Linear Systems and Optimal 052.pdf
	Linear Systems and Optimal 053.pdf
	Linear Systems and Optimal 054.pdf
	Linear Systems and Optimal 055.pdf
	Linear Systems and Optimal 056.pdf
	Linear Systems and Optimal 057.pdf
	Linear Systems and Optimal 058.pdf
	Linear Systems and Optimal 059.pdf
	Linear Systems and Optimal 060.pdf
	Linear Systems and Optimal 061.pdf
	Linear Systems and Optimal 062.pdf
	Linear Systems and Optimal 063.pdf
	Linear Systems and Optimal 064.pdf
	Linear Systems and Optimal 065.pdf
	Linear Systems and Optimal 066.pdf
	Linear Systems and Optimal 067.pdf
	Linear Systems and Optimal 068.pdf
	Linear Systems and Optimal 069.pdf
	Linear Systems and Optimal 070.pdf
	Linear Systems and Optimal 071.pdf
	Linear Systems and Optimal 072.pdf
	Linear Systems and Optimal 073.pdf
	Linear Systems and Optimal 074.pdf
	Linear Systems and Optimal 075.pdf
	Linear Systems and Optimal 076.pdf
	Linear Systems and Optimal 077.pdf
	Linear Systems and Optimal 078.pdf
	Linear Systems and Optimal 079.pdf
	Linear Systems and Optimal 080.pdf
	Linear Systems and Optimal 081.pdf
	Linear Systems and Optimal 082.pdf
	Linear Systems and Optimal 083.pdf
	Linear Systems and Optimal 084.pdf
	Linear Systems and Optimal 085.pdf
	Linear Systems and Optimal 086.pdf
	Linear Systems and Optimal 087.pdf
	Linear Systems and Optimal 088.pdf
	Linear Systems and Optimal 089.pdf
	Linear Systems and Optimal 090.pdf
	Linear Systems and Optimal 091.pdf
	Linear Systems and Optimal 092.pdf
	Linear Systems and Optimal 093.pdf
	Linear Systems and Optimal 094.pdf
	Linear Systems and Optimal 095.pdf
	Linear Systems and Optimal 096.pdf
	Linear Systems and Optimal 097.pdf
	Linear Systems and Optimal 098.pdf
	Linear Systems and Optimal 099.pdf
	Linear Systems and Optimal 100.pdf
	Linear Systems and Optimal 101.pdf
	Linear Systems and Optimal 102.pdf
	Linear Systems and Optimal 103.pdf
	Linear Systems and Optimal 104.pdf
	Linear Systems and Optimal 105.pdf
	Linear Systems and Optimal 106.pdf
	Linear Systems and Optimal 107.pdf
	Linear Systems and Optimal 108.pdf
	Linear Systems and Optimal 109.pdf
	Linear Systems and Optimal 110.pdf
	Linear Systems and Optimal 111.pdf
	Linear Systems and Optimal 112.pdf
	Linear Systems and Optimal 113.pdf
	Linear Systems and Optimal 114.pdf
	Linear Systems and Optimal 115.pdf
	Linear Systems and Optimal 116.pdf
	Linear Systems and Optimal 117.pdf
	Linear Systems and Optimal 118.pdf
	Linear Systems and Optimal 119.pdf
	Linear Systems and Optimal 120.pdf
	Linear Systems and Optimal 121.pdf
	Linear Systems and Optimal 122.pdf
	Linear Systems and Optimal 123.pdf
	Linear Systems and Optimal 124.pdf
	Linear Systems and Optimal 125.pdf
	Linear Systems and Optimal 126.pdf
	Linear Systems and Optimal 127.pdf
	Linear Systems and Optimal 128.pdf
	Linear Systems and Optimal 129.pdf
	Linear Systems and Optimal 130.pdf
	Linear Systems and Optimal 131.pdf
	Linear Systems and Optimal 132.pdf
	Linear Systems and Optimal 133.pdf
	Linear Systems and Optimal 134.pdf
	Linear Systems and Optimal 135.pdf
	Linear Systems and Optimal 136.pdf
	Linear Systems and Optimal 137.pdf
	Linear Systems and Optimal 138.pdf
	Linear Systems and Optimal 139.pdf
	Linear Systems and Optimal 140.pdf
	Linear Systems and Optimal 141.pdf
	Linear Systems and Optimal 142.pdf
	Linear Systems and Optimal 143.pdf
	Linear Systems and Optimal 144.pdf
	Linear Systems and Optimal 145.pdf
	Linear Systems and Optimal 146.pdf
	Linear Systems and Optimal 147.pdf
	Linear Systems and Optimal 148.pdf
	Linear Systems and Optimal 149.pdf
	Linear Systems and Optimal 150.pdf
	Linear Systems and Optimal 151.pdf
	Linear Systems and Optimal 152.pdf
	Linear Systems and Optimal 153.pdf
	Linear Systems and Optimal 154.pdf
	Linear Systems and Optimal 155.pdf
	Linear Systems and Optimal 156.pdf
	Linear Systems and Optimal 157.pdf
	Linear Systems and Optimal 158.pdf
	Linear Systems and Optimal 159.pdf
	Linear Systems and Optimal 160.pdf
	Linear Systems and Optimal 161.pdf
	Linear Systems and Optimal 162.pdf
	Linear Systems and Optimal 163.pdf
	Linear Systems and Optimal 164.pdf

